#### BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

| MIDWEST GENERATION, LLC | ) |              |
|-------------------------|---|--------------|
|                         | ) |              |
| Petitioner,             | ) | PCB 2021-108 |
|                         | ) |              |
| ILLINOIS ENVIRONMENTAL  | ) |              |
| PROTECTION AGENCY       | ) |              |
|                         | ) |              |
| Respondents,            | ) |              |

#### **NOTICE OF FILING**

To: See attached service list

PLEASE TAKE NOTICE that I have today electronically filed with the Office of the Clerk of the Pollution Control Board Midwest Generation, LLC's Hearing Exhibits R, S, T, U and V that were entered into the record for this matter at the July 27, 2021 hearing.

Dated: July 28, 2021

MIDWEST GENERATION, LLC

By: \_\_\_/s/Kristen L. Gale \_\_\_\_\_

Kristen L. Gale Susan M. Franzetti Molly H. Snittjer NIJMAN FRANZETTI LLP 10 South LaSalle Street Suite 3600 Chicago, IL 60603 (312) 251-5255

#### SERVICE LIST

Don Brown, Clerk of the Board Carol Webb, Hearing Officer Illinois Pollution Control Board James R. Thompson Center, Suite 11-500 100 W. Randolph Street Chicago, IL 60601 don.brown@illinois.gov carol.webb@illinois.gov

Christine Zeivel Clayton Ankney Stefanie Diers Division of Legal Counsel Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276 Christine.Zeivel@illinois.gov Clayton.Ankney@illinois.gov Stefanie.Diers@illinois.gov

#### **CERTIFICATE OF SERVICE**

The undersigned, an attorney, certifies that a true copy of the foregoing Notice of Filing, and Midwest Generation, LLC's Hearing Exhibits R, S, T, U and V were electronically filed on July 28, 2021 with the following:

Don Brown, Clerk of the Board Illinois Pollution Control Board James R. Thompson Center, Suite 11-500 100 W. Randolph Street Chicago, IL 60601 <u>don.brown@illinois.gov</u>

and that copies were sent via e-mail on July 28, 2021 to the parties on the service list.

Dated: July 28, 2021

/s/Kristen L. Gale \_\_\_\_\_

Kristen L. Gale Susan M. Franzetti Molly H. Snittjer Nijman Franzetti LLP 10 S. LaSalle Street, Suite 3600 Chicago, IL 60603 (312) 251-5255

#### **CERTIFICATION OF HEARING EXHIBITS**

The undersigned, an attorney, certifies that each of the Hearing Exhibits being filed is an accurate reproduction of the corresponding exhibit offered by Midwest Generation, LLC at the July 27, 2021 hearing in this matter.

Dated: July 28, 2021

/s/Kristen L. Gale\_\_\_\_\_

Kristen L. Gale Susan M. Franzetti Molly H. Snittjer Nijman Franzetti LLP 10 S. LaSalle Street, Suite 3600 Chicago, IL 60603 (312) 251-5255

# **Petitioner's Hearing Exhibit R**

Midwest Generation, LLC Will County Generating Station 529 East 135<sup>th</sup> Street Romeoville, 1L 60446

#### **Overnight Delivery**

February 14, 2017

Illinois EPA – Air Compliance Section Illinois Environmental Protection Agency Bureau of Air – Compliance Section (#40) 1021 North Grand Avenue East Springfield, IL 62702

#### Re: Will County Generating Station (Site ID 197810AAK) Revised Fugitive Dust Operating Program

Dear Sir or Madam,

As required by 35 IAC 212.309 and 35 IAC 212.312, please find enclosed an updated Fugitive Particulate Matter Operating Program for Will County Generating Station ("Will County"). This submission of the Operating Program revises the May 2016 version. The purpose of this submission is to update the Operating Program upon completion of the Dry Sorbent Injection ("DSI") system installation for Will County Unit 4 in accordance with construction permit Application No. 16070002 issued on July 29, 2016. Please note that Will County Unit 4 uses DSI system as a discretionary control for SO2 emissions.

If you have any questions regarding this submission, please contact Suchismita Bose at <u>Suchismita.Bose@nrg.com</u> or (708) 821-5981.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

with Kenny

Scott Perry Will County Station Director

Cc: IEPA (Regional Office - Des Plaines, IL)

Enclosure

# Fugitive Particulate Matter Operating Program Revision 5

Midwest Generation, LLC - Will County Generating Station - Source ID 197810AAK

Midwest Generation, LLC - Will County Generating Station | Source ID - 197810AAK

.

# TABLE OF CONTENTS

| TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                  | II       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Operating Program Revision Log                                                                                                                                                                                                                                                                                                                                                                                                                     | Ш        |
| I. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| <ul> <li>II. Source Information</li> <li>I. 35 IAC 212.310(a) - Name and Address of the Source</li> </ul>                                                                                                                                                                                                                                                                                                                                          | 2        |
| II.35 IAC 212.310(b) - Owner or Operator Responsible for Execution of the Operating PrIII.35 IAC 212.310(c) - Map or Diagram of the Source                                                                                                                                                                                                                                                                                                         | rogram2  |
| <ul> <li>III. 35 IAC 212.310(d) – Location of Unloading and Transporting Operations with Pollution Contemporations</li> <li>Equipment</li> <li>I. Unloading Operations</li> <li>II. Transporting Operations</li> </ul>                                                                                                                                                                                                                             | 3<br>3   |
| <ul> <li>IV. 35 IAC 212.310(e) - Best Management Practices <ol> <li>Storage Piles</li> <li>Conveyors</li> <li>Conveyor Transfer Points</li> <li>Conveyor Transfer Points</li> <li>Truck/Railcar Loading/Unloading</li> <li>Traffic Areas / Roadway Cleaning</li> <li>V. Traffic Areas / Roadway Cleaning</li> <li>VI. Material Collected by Pollution Control Equipment / Dust Collectors</li> </ol> </li> <li>Appendix 1: Site Diagram</li> </ul> | 6<br>    |
| Appendix 2: Sample Monthly Fugitive Dust Inspection Log                                                                                                                                                                                                                                                                                                                                                                                            | 14       |
| Appendix 3:Sample Weekly Fugitive Dust Inspection LogAppendix 4:Sample Daily Fugitive Dust Log                                                                                                                                                                                                                                                                                                                                                     | 18<br>21 |

# Operating Program Revision Log

| Revision | Revision Date  | Summary of Revisions                                                                                                                                                                             |
|----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | March 1983     | Initial Issue                                                                                                                                                                                    |
| 1        | September 1986 |                                                                                                                                                                                                  |
| 2        | August 1995    |                                                                                                                                                                                                  |
| 3        | March 2006     |                                                                                                                                                                                                  |
| 4        | May 2016       | Operating Program updates per new ownership                                                                                                                                                      |
| 5        | February 2017  | Operating Program updates per completion of Dry Sorbent<br>Injection ("DSI") System installation. Please note that Will County<br>Station uses DSI as a discretionary control for SO2 emissions. |
|          |                |                                                                                                                                                                                                  |
|          |                |                                                                                                                                                                                                  |
|          |                |                                                                                                                                                                                                  |

#### I. Introduction

This document constitutes the Operating Program for Fugitive Particulate Matter Control for the Will County Generating Station located in Romeoville, Illinois (Will County Station). Fugitive particulate matter (PM) is regulated under Title 35 of the Illinois Administrative Code (IAC), Part 212, Subpart K. Pursuant to 35 IAC 212.309(a), fugitive emissions from storage piles, conveyor loading operations, conveyors, traffic areas, byproduct truck loading, crushers, materials collected by pollution control equipment, and any other units for which spraying or choke-feeding is required must be operated under the provisions of an operating program.

This document is organized such that it follows the regulatory requirements of 35 IAC 212.309, 35 IAC 212.310, and 35 IAC 212.312.

Pursuant to 35 IAC 212.309, emission units and activities that are subject to 35 IAC 212.304 through 212.308 must be addressed in the Operating Program. At the Will County Station, these units and activities include the following:

- 1. Storage Piles (35 IAC 212.304);
- 2. Conveyor Loading Operations (35 IAC 212.305)
- 3. Conveyors (35 IAC 212.308);
- 4. Transfer Points (35 IAC 212.308);
- 5. Truck Loading/Unloading (35 IAC 212.308);
- 6. Traffic Areas/Roadways or Parking Areas (35 IAC 212.306); and
- 7. Materials Collected by Pollution Control Equipment / Dust Collectors (35 IAC 212.307).

The emission limitations for emission units located in certain areas (35 IAC 212.316) are not applicable because the Will County Station is not located in one of the areas specified in 35 IAC 212.324(a)(1).

A record of amendments to this Operating Program, as required per 35 IAC 212.312, is documented in the Operating Program Revision Log.

This Operating Program is designed to significantly reduce fugitive particulate matter (PM) emissions, as required by 35 IAC 212.309.

#### II. Source Information

The following source information is provided pursuant to 35 IAC 212.310(a) through 35 IAC 212.310(c).

#### I. 35 IAC 212.310(a) - Name and Address of the Source

Will County Generating Station 529 E. 135<sup>th</sup> Street Romeoville, Illinois 60446

#### II. 35 IAC 212.310(b) - Owner or Operator Responsible for Execution of the Operating Program

Oversight and on-going execution of the Operating Program is the responsibility of the Will County Station Director, supported by the Environmental Specialist. Both of these individuals are located at 529 E. 135<sup>th</sup> Street, Romeoville, Illinois 60446.

### III.35 IAC 212.310(c) - Map or Diagram of the Source

A site map of the Will County Station showing the approximate facility boundaries, buildings, storage piles, storage silos, conveyor loading operations, normal traffic pattern access areas surrounding storage piles and all normal traffic patterns within the facility is provided in Appendix 1 to this Operating Program.

### III.35 IAC 212.310(d) - Location of Unloading and Transporting Operations with Pollution Control Equipment

## I. Unloading Operations

Coal is generally transported and delivered to Will County Station via railcars and unloaded using a rotary car dumper. The rotary car dumper building is located on the north-west side of the boiler/turbine building and is identified in Appendix 1. The rotary car dumper is housed in an enclosure which utilizes a dust collection system (Baghouse 1) to reduce the potential for fugitive dust emissions.

Occasionally coal is also delivered to Will County Station by means of trucks and the coal from the trucks may be unloaded directly onto the coal pile located on the north side of the facility.

Activated carbon is transported and delivered to the Will County Station via pneumatic discharge trucks. The activated carbon silos are located to the south-west side of the boiler/turbine building and are identified in Appendix 1. The activated carbon storage silos are equipped with a bin vent filters to control particulate matter emissions during the loading of the silos.

Soda ash is transported and delivered to the Will County Station on an as needed basis by means of pneumatic discharge trucks. The soda ash silo is located to the north-west side of the boiler/turbine building and is identified in Appendix 1. The soda ash silo is equipped with bin vent filter to control particulate matter emissions during the loading of the silo.

Trona is transported to Will County Station via railcar. It is then pneumatically loaded from the railcar to dedicated trucks to transport the Trona from the railcar unloading area to the Trona storage silos. The rail unloading station is equipped with a dust collector to control PM emissions from the railcar unloading process and truck loading process. The Trona storage silos are also equipped with bin vent filters to control PM emissions during the loading of Trona into the silos. The locations of the railcar unloading station and the Trona storage silos are identified in Appendix 1.

# II. Transporting Operations

Transporting operations at the Will County Station consist of truck, railcar, and front-end loader operations, along with conveyors.

Coal is transported and delivered to the Will County Station via railcars and trucks. The railcars are uncovered; however they travel long distances prior to arriving at the Will County Station. Therefore, any loose material and/or fugitive emissions from the railcars are expected to have been released prior to arrival at the facility, and minimal emissions are anticipated from the transport of coal via railcar within the Will County Station site boundary. Rail lines utilized for coal delivery are located along the perimeter of the facility boundary. The trucks delivering coal enter the facility through the main gate and dump the coal directly onto the coal pile located to the north side of the facility.

Within Will County Station, coal is transported from the rotary car dumper to the active coal pile, and then to the breaker building and boiler/turbine building via a series a coal conveyors and transfer points. All of the coal conveyors are enclosed and all transfer points are either enclosed or treated with water spray, weather permitting, to prevent the release of fugitive PM emissions. A number of dust collectors are also present, as detailed in Table – 1, to control fugitive PM emissions from coal conveying operations. Coal is transported

from the active coal pile to the Breaker Building and finally to the boiler/turbine building as depicted in Appendix 1.

The activated carbon storage silos are equipped with bin vent filters to control PM emissions during silo loading. The location of the activated carbon storage silos are identified in Appendix 1. Activated carbon is pneumatically transferred from the storage silos to air pollution control ductwork between the Unit 4 boiler and the ESP.

Soda ash is transferred on an as needed basis from the silo and injected onto Conveyor Belt 1(BELT-1) by means of the soda ash chute in the enclosed coal tunnel. PM emissions from the soda ash system are controlled by the bin vent filter on the silo.

Trona is transported from the railcar unloading station to the storage silos via trucks. The PM emissions resulting from the loading of the silos are controlled by the bin vent filters on the silos. Trona is then pneumatically transferred from the storage silos to the air pollution control ductwork between the Unit 4 boiler and the ESP via grinding mills. The PM emissions from this transfer are controlled by the Unit 4 ESP. The location of the railcar unloading station, Trona silos and the grinding mills are identified in Appendix 1.

Trucks are used for the offsite transportation of fly ash from Will County Station. Fly ash is drop loaded from the silos into the trucks through telescopic chutes to minimize drop height. The fly ash silos are equipped with baghouses (Baghouses 8 and 9) to control PM emissions during the load out of fly ash. The loading of the fly ash trucks occurs within a partial enclosure near the base of the fly ash silo, as depicted in Appendix 1.

Bottom ash is transported with water from the boiler's slag tank hood to one of the two ash ponds located towards the south-west of the boiler/turbine building via pipelines. This being an inherently wet process, the potential for fugitive PM emission is greatly minimized.

## IV.35 IAC 212.310(e) - BEST Management Practices

The following sections of the Operating Program, as required by 35 IAC 212.310(e), detail the best management practices used to achieve compliance with 35 IAC 212 Subpart K. Additionally, this Operating Program includes a description of control measures, devices, and technologies used to minimize and control all emission units that have the potential to emit fugitive particulate matter. The frequency of the application of any dust suppressants, as required per 35 IAC 212.310(f), is also noted.

# I. Storage Piles

**Emission Limit:** Pursuant to 35 IAC 212.301, no person shall cause or allow the emission of fugitive particulate matter from any process, including material handling or storage activity that is visible by an observer looking generally toward the zenith at a point beyond the property line of the source. **Operational Requirements per Regulation:** Protected by a cover or sprayed with water or a surfactant solution on a regular basis, or treated by an equivalent method (35 IAC 212.304) **Fugitive Dust Control:** Water sprays or equivalent method

The coal storage pile is located towards the north of the Will County Station facility. The coal pile consists of active and inactive areas, which are managed differently for fugitive dust. The active pile area is the portion of the pile which receives new deliveries of coal or is frequently being worked or disturbed by the action of coal pile vehicles and equipment. The inactive portion of the pile remains relatively undisturbed for several days at a time. A log is maintained by the Shift Supervisor or designee that documents fugitive dust treatment for the active and inactive areas of the pile. Pre-control fugitive dust emissions from the coal storage pile are estimated to be greater than 50 tons per year. Therefore, the requirements of 35 IAC 212.304 applies to the bulk coal storage pile at this facility. Personnel at the Will County Station employ a number of best management practices to reduce fugitive emissions from the coal storage pile. The active areas of the pile are not operational nor anticipated to be operational, the pile is sprayed with water as needed to minimize fugitive dust. The inactive areas of the pile may be treated with water or chemical binding agent on an as needed basis to control the emissions of fugitive PM. Water spray treatments are tracked on a Fugitive Dust Log similar to the log provided in Appendix 4.

Sometimes, malfunction or breakdown of fly ash handling equipment can lead to temporary stockpile storage of fly ash and handling of such fly ash for offsite shipment. Personnel at Will County Station employ a number of best management practices to control fugitive dust emissions from the temporary ash pile and related handling in case such a situation arises. A grade-level concrete pad within a retaining wall having a wind screen is used for temporary stockpile storage of ash if necessary. This concrete pad is located towards the south side of the Will County Station property. To minimize fugitive dust emissions from the retaining wall and wind screen whenever possible and the piles are either sprayed with water or covered.

Water spray treatments may be suspended for up to twenty-four (24) hours following a precipitation event and during the period from December 1<sup>st</sup> through the end of February and during any other periods where the daily low temperature is anticipated to be below freezing. Furthermore, pursuant to 35 IAC 212.314, water spray treatments are not applied when the wind speed is greater than 25 miles per hour. Daily rainfall and wind speed are tracked on a Fugitive Dust Log similar to the log provided in Appendix 4.

### **II.** Conveyors

**Emission Limit:** Pursuant to 35 IAC 212.301, no person shall cause or allow the emission of fugitive particulate matter from any process, including material handling or storage activity that is visible by an observer looking generally toward the zenith at a point beyond the property line of the source. **Operational Requirements per Regulation:** Sprayed with water or a surfactant solution, utilize choke-feeding or be treated by an equivalent method (35 IAC 212.308) **Fugitive Dust Control:** Covered conveyors, dust control systems and equivalent method

Coal is transferred to and from the storage pile using conveyors. All of the conveyors at the Will County Station are covered to reduce the potential for wind-borne fugitive emissions during conveyor transport. In addition, since water sprays are used to minimize fugitive emissions at the coal pile (refer to Section 4.1 of this Operating Program), the material transferred on the conveyors is sufficiently wetted, further reducing the potential for fugitive emissions from some of the conveyors are also controlled by dust collectors as detailed in Table-1. Fugitive PM emissions from BELT-1 are controlled by Baghouse 2, fugitive PM emissions from BELT-3 and BELT-4 are controlled by Baghouse 3, fugitive PM emissions from BELT-5 are controlled by Baghouse 4 and fugitive PM emissions from BELT-B1 and BELT-B2 are controlled by Baghouse 5.

Personnel at the Will County Station Facility observe the conveyors and applicable control equipment at regular intervals to ensure they are functioning properly and to observe for fugitive emissions. Observations are recorded on an inspection log, similar to the logs provided in Appendix 2 and Appendix 3.

## **III.Conveyor Transfer Points**

**Emission Limit**: Pursuant to 35 IAC 212.301, no person shall cause or allow the emission of fugitive particulate matter from any process, including material handling or storage activity that is visible by an observer looking generally toward the zenith at a point beyond the property line of the source. **Operational Requirements per Regulation**: Sprayed with water or a surfactant solution, utilize choke-feeding or be treated by an equivalent method (35 IAC 212.308) **Fugitive Dust Control**: Dust control systems and equivalent operational practices

Coal is delivered to Will County via railcars at the Rotary Car Dumper Building. Two feeder belts (BF1 and BF2), which are located underground, feed the coal from the car dumper to conveyor belt 1(BELT-1). Then the coal is transferred from conveyor belt 1(BELT-1) to conveyor belt 2 (BELT-2) via an enclosed transfer point 1-2. PM emissions from transfer point 1-2 are controlled by Baghouse 2. Coal is then transferred from conveyor belt 2 to the coal pile using a radial boom stacker, which is operated such that it maintains the minimum practical free-fall distance of conveyed coal onto the coal pile, and also includes water spray control. The use of water sprays in association with the radial stacker is in accordance with the water spray best management practices outlined in Section 4.1. Coal is then transferred underground from the pile to conveyor belts 3 and 4 (BELT-3 and BELT-4)via the tunnel reclaim feeders. Since the transfer of coal to belts 3 and 4 occur underground, the potential for PM emission is minimized. Conveyor belts 3 and 4 then transfer the coal to conveyor belt 5 (BELT-5) via transfer point 3-4-5. PM emission from the conveyor transfer point 3-4-5 is controlled by Baghouse 3. Conveyor belt 5 transfers the coal to conveyor belts U1 and U2 (BELT-U1 and BELT-U2) within the Junction Tower. The conveyor transfer point 5-U1-U2 is located inside the Junction Tower and fugitive PM emissions from this transfer point are controlled by Baghouse 4. Then the coal from the conveyor belts U1 and U2 is transferred to conveyor belts H1 and H2 (BELT-H1 and BELT-H2). Coal from the coal pile can also be transferred directly to the H conveyor belts via a reclaim conveyor belt R1 (BELT-R1) which is fed underneath the pile using reclaim hoppers. Since the coal is

transferred to the reclaim conveyor belt from underneath the pile, the potential of PM emissions from the process is minimized. The conveyor transfer point R1-U-H is completely enclosed to control PM emissions. Then the coal from H conveyor belts is transferred to A1 and A2 conveyor belts (BELT-A1 and BELT-A2) via the surge hopper. The conveyor transfer point H-A is completely enclosed to minimize PM emissions. The A conveyor belts lead into the breaker building. Within the breaker building coal is either sent directly to the primary crusher and dropped onto the B conveyor belts (BELT-B1 and BELT-B2)or sent to secondary crushers and dropped directly onto one of the C conveyor belts (BELT-C1 and BELT-C2). Coal from the B conveyor belts is then transferred to the C conveyor belts via transfer point B-C. The conveyor transfer points A-B and B-C are located within the Breaker Building and fugitive emissions from these transfer points are controlled by the breaker building dust collectors (Baghouses 5, 6). The C conveyors lead out of the Breaker Building where the coal is transferred to the D conveyor belts (BELT-D1 and BELT-D2). PM emissions from conveyor transfer point C-D are controlled by the Baghouse 7. The D conveyors are located within the main building and transfer the coal to the Unit bunkers. PM emissions from the transfer of coal from the D conveyor belts to the Unit 4 bunker are controlled by a wet dust extractor (DE2).

Occasionally or on an as needed basis soda ash is injected directly onto the coal in conveyor belt 1 (BELT-1). This transfer is done by means of a soda ash chute in the enclosed coal tunnel to minimize the emission of PM during the transfer of soda ash.

Personnel at the Will County Station observe the radial stacker and other material transfer points at regular intervals to ensure they are functioning properly and to observe for fugitive emissions. Observations are recorded on an inspection log, similar to the logs provided in Appendix 2 and Appendix 3.

# IV.Truck/Railcar Loading/Unloading

**Emission Limit:** Pursuant to 35 IAC 212.301, no person shall cause or allow the emission of fugitive particulate matter from any process, including material handling or storage activity that is visible by an observer looking generally toward the zenith at a point beyond the property line of the source. **Operational Requirements per Regulation:** Sprayed with water or a surfactant solution, utilize choke-feeding or be treated by an equivalent method (35 IAC 212.308) **Fugitive Dust Control:** Dust collectors or Equivalent operational practices

Coal is transported and delivered to the Will County Station via railcars and occasionally by means of trucks. Railcars are individually rotated within the car dumper building to transfer the contents of the rail car into hoppers. The coal is then transported to the active coal storage pile via the "BELT-1" and "BELT-2" covered conveyors and radial boom stacker. The rotary railcar dumper is enclosed and controlled by a dust collector (Baghouses 1). Truck coal is generally delivered directly onto the coal pile. In order to control fugitive dust emissions from truck coal delivery, the coal pile may be sprayed with water prior to the arrival of the trucks and during truck activity whenever possible.

Activated carbon and soda ash is delivered to the Will County facility by pneumatic trucks. The activated carbon and soda ash is blown into the storage silos. The transport air has some particles entrained in it and so the conveying air is vented through the silo bin vent filters prior to discharge into the atmosphere.

Trona is delivered to Will County via railcar. It is then pneumatically loaded from the railcar to dedicated trucks to transfer the Trona from the railcar unloading station to the storage silos. The railcar unloading station is equipped with a dust collector to control PM emissions from the railcar unloading/truck loading

process. The PM emissions arising from the pneumatic transfer of Trona from the trucks to the storage silos are controlled by the bin vent filters on the Trona storage silos.

Fly ash is drop loaded using a telescopic chute from the fly ash silos into tank trucks in a partially enclosed area to minimize fugitive PM emissions during gravity load out of dry fly ash. The truck operator manages fly ash loading activities to minimize spills. Any fly ash spills are cleaned up using the street sweeper, vacuum truck, or similar method as soon as possible after the spill occurs. Also the fly ash silos are equipped with baghouses (Baghouses 8 and 9) to control particulate emissions from the unloading process.

Bottom ash is transported with water from the boiler's slag tank hood to one of the two ash ponds via pipelines. The ash ponds are normally filled with water and thereby suppress any potential fugitive dust emissions. Infrequently the ash ponds need to be dewatered and the sediment is removed offsite. While the bottom ash and slag residue is drying, there is a potential for this material to become airborne during excessively dry and windy conditions. Truck loading of this material for offsite shipment is avoided during extremely dry or windy conditions. To minimize fugitive dust emissions from the exposed dry bottom ash and slag, the height of the material is minimized and the material pile tends to form a hard crust when left inactive. The haul trucks are covered with tarp or similar material once they have been loaded as per the requirements of 35 IAC 212.315 to control fugitive PM emissions.

Personnel at the Will County Station monitor the loading and unloading operations at regular intervals to ensure they are functioning properly and to observe for potential fugitive emissions. Observations are recorded on an inspection log, similar to the logs provided in Appendix 2 and Appendix 3.

## V. Traffic Areas / Roadway Cleaning

**Emission Limit**: Pursuant to 35 IAC 212.301, no person shall cause or allow the emission of fugitive particulate matter from any process, including material handling or storage activity that is visible by an observer looking generally toward the zenith at a point beyond the property line of the source. **Operational Requirements per Regulation**: All normal traffic pattern roads and parking facilities shall be paved or treated with water, oils or chemical dust suppressants. All paved areas shall be cleaned on a regular basis. All areas treated with water, oils or chemical dust suppressants shall have the treatment applied on a regular basis, as needed (35 IAC 212.306)

Fugitive Dust Control: Operational practices and wet street sweeping, as weather conditions allow

Traffic areas at the Will County Station are primarily paved. Paved areas are swept or treated with water as needed, to minimize fugitive emissions. Sweeping or watering of paved areas may be suspended from December 1 through the end of February each year, and during any other periods when the anticipated daily low temperature is below freezing, and following a precipitation event. Daily low temperatures and rainfall amounts are tracked on a Fugitive Dust Log similar to the log provided in Appendix 4.

Unpaved (gravel) roads are located around part of the ash ponds, Car Dumper Building and the fly ash silos. All unpaved roads are treated with water sprays on an as needed basis to control fugitive PM emissions. The application of water sprays may be suspended during the period from December 1 through the end of February, during any other periods when the anticipated daily low temperature is below freezing, and for up to 24 hours following a precipitation event. Daily low temperature and rainfall amounts are tracked on a Fugitive Dust Log similar to the log provided in Appendix 4.

#### VI. Material Collected by Pollution Control Equipment / Dust Collectors

**Emission Limit:** Pursuant to 35 IAC 212.313, if particulate matter collection equipment is operated pursuant to 35 IAC 212.304 through 212.310, emissions of particulate matter from such equipment shall not exceed 68 mg/dscm (0.03 gr/dscf).

**Operational Requirements per Regulation:** Materials collected by pollution control equipment shall be enclosed or shall utilize spraying, pelletizing, screw conveying or other equivalent methods pursuant to 35 IAC 212.307

Fugitive Dust Control: Materials collected by the dust collectors are enclosed or wetted.

The electrostatic precipitators ("ESPs") are the most significant particulate matter collection devices at Will County Station. Fly ash collected from the ESP is handled according to the control measures stated in Section 4.4. Other dust collectors provide control for the coal and fly ash handling operations. Dust collectors are installed on the Railcar Dumper Building and Breaker Building to reduce the potential for fugitive dust emissions from railcar unloading and coal processing. The material collected in the Breaker Building dust collectors (Baghouses 5 and 6) is returned to the Unit 4 coal bunkers via Baghouse 7. Particulate emission from the fly ash handling operation is controlled by baghouses (Baghouses 8 & 9) and the emissions from the Unit 4 coal bunkers are controlled by a wet dust extractor (DE2).

The activated carbon, soda ash and Trona silos are all equipped with bin vent filters to capture PM emissions during loading of the silos. The materials collected by the silo bin vent filters are enclosed and are dropped back into the silo. Additionally the railcar unloading station for Trona delivery is equipped with a dust collector to control PM emissions from railcar unloading/ truck loading process. The materials collected by the railcar unloading dust collected by the railcar.

The Shift Supervisor or designee observes the dust collectors at regular intervals to assess the presence of visible emissions from the dust collector exhaust points. Any visible emissions are noted on the Fugitive Dust inspection log, similar to the logs provided in Appendix 2 and Appendix 3, and corrective action is performed as soon as practicable.

| PM Control Equipment                                                            | Design Flow<br>Rate<br>(scfm) | Outlet Grain Loading<br>(gr/scf) |
|---------------------------------------------------------------------------------|-------------------------------|----------------------------------|
| BH1 (Car Dumper Baghouse)                                                       | 134,000                       | 0.015                            |
| BH2 (Transfer Point 1-2 and BELT-1 Baghouse)                                    | 3,000                         | 0.015                            |
| BH3 (BELT-3, BELT-4, BELT-5 and Transfer Point 3-4-5 Baghouse)                  | 34,500                        | 0.015                            |
| BH4 (Transfer Point 5-U1-U2, Junction Tower<br>Baghouse)                        | 20,200                        | 0.015                            |
| BH5 (Breaker Building Baghouse)                                                 | 20,600                        | 0.015                            |
| BH6 (Breaker Building Transfer Point B-C<br>Baghouse)                           | 40,000                        | 0.015                            |
| BH7 (Transfer Point C-D Baghouse)                                               | 20,600                        | 0.015                            |
| DE2 (Unit 4 Coal Bunker Dust Extractor)                                         | 12,500                        | 0.015                            |
| BH8 (Fly Ash Silo Baghouse)                                                     | 20,000                        | 0.015                            |
| BH9 (Fly Ash Silo Baghouse)                                                     | 20,000                        | 0.015                            |
| BV1 (Soda Ash Silo Bin Vent Filter)                                             | 1,200                         | 0.03                             |
| BV2 (Unit 3 ACI Silo Bin Vent Filter)                                           | 400                           | 0.01                             |
| BV3 (Unit 4 ACI Silo Bin Vent Filter)                                           | 400                           | 0.01                             |
| Trona Silo Bin Vent Filter (One Filter Per Silo for<br>Two Trona Storage Silos) | 1117                          | 0.01                             |
| Railcar Unloading Dust Collector                                                | 590                           | 0.001                            |

#### Table 1 - Particulate Collection Equipment Specifications

Table 2 - Sample Quarterly Inspection Form for Dry Sorbent Injection ("DSI") Sources

Note: Inspection must be conducted while units are operational

| ns"                                                                                                                              | Date &<br>Time of<br>Corrective<br>Action                                          |                      |                      |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|----------------------|----------------------------------------------------------------------|
| to "No Visible Emissic                                                                                                           | If Visible<br>Emissions Present<br>Then<br>Describe<br>Corrective<br>Actions Taken |                      |                      |                                                                      |
| If visible emissions are present, corrective actions must be initiated within 24 hours to return units to "No Visible Emissions" | Method 22 for 30<br>minutes :<br>Visible Emissions<br>Present?<br>(Yes/No)         |                      |                      |                                                                      |
| ust be initiated withi                                                                                                           | Inspection Point                                                                   | Bin Vent Exhaust     | Bin Vent Exhaust     | Dust Collector<br>Discharge Duct                                     |
| t, corrective actions m                                                                                                          | Control Equipment                                                                  | Silo Bin Vent Filter | Silo Bin Vent Filter | Dust Collector                                                       |
| ble emissions are presen                                                                                                         | Emission Unit                                                                      | Trona Storage Silo 1 | Trona Storage Silo 2 | Railcar Unloading<br>Station / Truck<br>Loading Station for<br>Trona |
| If visil                                                                                                                         | Date &<br>Time of<br>Inspection                                                    |                      |                      |                                                                      |

Observer Name:

**Observer Signature:** 

# Appendix 1: Site Diagram



| SAMPLE MONTHLY INSPECTION - COAL HANDLING, ACI, SODA ASH & DSI - WILL COUNTY STATION           |
|------------------------------------------------------------------------------------------------|
| Monthly, while the Coal Handling Sources are in use, operation shall be observed and recorded. |
| If excess emissions are evident, contact the Supervisor.                                       |
|                                                                                                |

|                       |           |           |       |                     | Observed              |           |           | 101-5-12 st |                      |
|-----------------------|-----------|-----------|-------|---------------------|-----------------------|-----------|-----------|-------------|----------------------|
|                       |           |           |       |                     | Condition             |           |           |             |                      |
|                       |           |           |       |                     | C = Clear             |           |           |             |                      |
|                       |           |           |       |                     | V = Minor             | Process   |           |             |                      |
|                       | Emission  | Control   | Vent  |                     | Emissions             | Ē         | Control   |             |                      |
| Emission Unit         | Unit      | Equipment | Stack | Inspection          | X = Excess            | Operation | Equipment | Maint.      | Method 9 VE IF X =   |
| ALL THE SHIT S        | 9         | ₽         | 9     | Point               | Emissions             | (N/N)     | (IS/00S)  | Required?   | Excess Emissions     |
|                       | Sound and | AN A LAN  | 1     | Ö                   | Coal Handling Sources | 5         | all's has | 5 W. V. L.  | Second Second Second |
|                       |           |           |       | Ground              |                       |           |           |             |                      |
| Reclaim Hopper        | RH        | INBLDNG   |       | Level               |                       |           |           |             |                      |
|                       |           |           |       | Ground              |                       |           |           |             |                      |
| RH-R1 Transfer Point  | TPRH-R1   | INBLDNG   |       | Level               |                       |           |           |             |                      |
| R1 Conveyor Belt      | BELT-R1   | ENCL      |       | <b>Outside Belt</b> |                       |           |           |             | <u>.</u>             |
|                       | BELT-U1,  |           |       |                     |                       |           |           |             |                      |
| U1&2 Conveyor Belt    | BELT-U2   | ENCL      | ENCL  | <b>Outside Belt</b> |                       |           |           |             |                      |
|                       |           |           |       | Transfer            |                       |           |           |             |                      |
| R1-U-H Transfer Point | TPR1-U-H  | INBLDNG   |       | Point               |                       |           |           |             |                      |
|                       | BELT-H1,  |           |       |                     |                       |           |           | ж           |                      |
| H1&2 Conveyor Belt    | BELT-H2   | ENCL      |       | <b>Outside Belt</b> |                       |           |           |             |                      |
| H-A Transfer Point    |           |           |       |                     |                       |           |           |             |                      |
| (Surge Hopper)        | TPH-A     | ENCL      |       | <b>Outside Belt</b> |                       |           |           |             |                      |
|                       | BELT-A1,  |           |       |                     |                       |           |           |             |                      |
| A1&2 Conveyor Belt    | BELT-A2   | ENCL      |       | <b>Outside Belt</b> |                       |           |           |             |                      |
|                       |           |           |       | Baghouse            |                       |           |           |             |                      |
|                       |           |           |       | Blower              |                       |           |           |             |                      |
| A-B Transfer Point    |           |           |       | Discharge           |                       |           |           |             |                      |
| B1&2 Conveyor Belt    | 88        | BH5       | V5    | Duct                |                       |           |           |             |                      |
|                       |           |           |       | Baghouse            |                       |           |           |             |                      |
|                       |           |           |       | Blower              |                       |           |           |             |                      |
|                       |           |           |       | Discharge           |                       |           |           |             |                      |
| B-C Transfer Point    | TPB-C     | BHG       | V6    | Duct                |                       |           |           |             |                      |
|                       | BELT-C1,  |           |       | :                   |                       |           |           |             |                      |
| C1&2 Conveyor Belt    | BELT-C2   | ENCL      |       | Outside Belt        |                       |           |           |             |                      |

| Emission Unit      | Emission<br>Unit<br>D | Control<br>Equipment<br>ID | Vent/<br>Stack<br>ID | Inspection<br>Point | Observed<br>Condition<br>C = Clear<br>V = Minor<br>Emissions<br>X = Excess<br>Emissions | Process<br>in<br>Operation<br>(V/N) | Control<br>Equipment<br>(IS/OOS) | Maint.<br>Required? | Method 9 VE 1F X =<br>Excess Emissions |
|--------------------|-----------------------|----------------------------|----------------------|---------------------|-----------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|---------------------|----------------------------------------|
| Coal Pile          | PILE 1                | WATER                      | FUG 2                | At Property<br>Line |                                                                                         |                                     |                                  |                     |                                        |
| Paved Roads        | PR1                   | WATER                      | FUG 1<br>0           | Property Line       |                                                                                         |                                     |                                  |                     |                                        |
| Innaved Roads      |                       | WATER/<br>VACIIIIM         | FUG1                 | Pronerty Line       |                                                                                         |                                     |                                  |                     |                                        |
|                    |                       |                            |                      | Baghouse            |                                                                                         |                                     |                                  |                     |                                        |
| C-D Transfer Point | TPC-D                 | BH7                        | 5                    | Discharge<br>Duct   |                                                                                         |                                     |                                  |                     |                                        |
| D1&2 Convevor Belt | BELT-D1,<br>BELT-D2   | Œ                          |                      | Outside Belt        |                                                                                         |                                     |                                  |                     |                                        |
| Unit 3 Runker      | BLINK 3               | ENGART 1                   | V10                  | Stack<br>Dischame   |                                                                                         |                                     |                                  |                     |                                        |
| Inis 4 Runker      |                       | ENGART 2                   | 241<br>1             | Stack               |                                                                                         |                                     |                                  |                     |                                        |
|                    |                       |                            |                      | Soda A              | Soda Ash, ACI & DSI Sources                                                             | ICOS                                |                                  |                     |                                        |
| Soda Ash Silo      | SILO3                 | BV1                        | V43                  | Blower<br>Discharge |                                                                                         |                                     |                                  |                     |                                        |
| Unit 3 ACt Silo    | SILO5                 | BV2                        | V44                  | Silo Bin<br>Vent    |                                                                                         |                                     |                                  |                     |                                        |
| Unit 4 ACI Silo    | SILO4                 | BV3                        | V45                  | Silo Bin<br>Vent    |                                                                                         |                                     |                                  |                     |                                        |
| Unit 4 Trona Silo  | SILO1                 | BVF                        |                      | Silo Bin<br>Vent    |                                                                                         |                                     |                                  |                     |                                        |
|                    |                       |                            |                      | Silo Bin            |                                                                                         |                                     |                                  | :                   |                                        |
| Unit 4 Trona Silo  | SILO2                 | BVF                        |                      | Vent                |                                                                                         |                                     | -                                |                     |                                        |

|                   | Emission | Control<br>Equipment | Vent/<br>Stack | Inspection | Observed<br>Condition<br>C = Clear<br>V = Minor<br>Emissions<br>X = Excess | Process<br>in<br>Operation | Control<br>Equipment | Maint.    | Method 9 VE IF X= |
|-------------------|----------|----------------------|----------------|------------|----------------------------------------------------------------------------|----------------------------|----------------------|-----------|-------------------|
| Emission Unit     | 2        | ٥                    | ₽              | Point      | Emissions                                                                  | (N/N)                      | (IS/00S)             | Required? | Excess Emissions  |
|                   |          |                      |                | Dust       |                                                                            |                            |                      |           |                   |
| Trona Railcar     |          | Dust                 |                | Collector  |                                                                            |                            |                      |           |                   |
| Unloading Station |          | Collector            |                | Exhaust    |                                                                            |                            |                      |           |                   |

Week of: \_\_\_\_ Date: \_\_\_\_ Time: \_\_\_\_ Observer Signature:

Electronic Filing: Received, Clerk's Office 07/28/2021

Midwest Generation, LLC - Will County Generating Station | Source ID - 197810AAK

Appendix 3: Sample Weekly Fugitive Dust Inspection Log

SAMPLE WEEKLY INSPECTION - COAL HANDLING, COAL PROCESSING AND FLY ASH EQUIPMENT - WILL COUNTY STATION

Weekly, while the Coal Processing and Fly Ash Processing Sources are in use, operation shall be observed and recorded.

|                            |           |           |       |                     |                                | Observed       |            |                        |            |      |
|----------------------------|-----------|-----------|-------|---------------------|--------------------------------|----------------|------------|------------------------|------------|------|
|                            |           |           |       |                     |                                | Conditions     |            |                        |            |      |
|                            |           |           |       |                     |                                | C = Clear      |            |                        |            |      |
|                            |           |           |       |                     |                                |                |            | Control Equipment      |            |      |
| Emission I Init            | Emission  | Control   | Venu  | Inconcellan         | Date and                       | C - Evons      | Process In | in service (is) of out |            |      |
|                            | 2         | cquipment | SIGUE | IIIspection         |                                | A = EACESS     | oberation  |                        | mannenaria |      |
|                            | Unit 10   | 9         | ₽     | Point               | Inspection                     | Emissions      | (Ves/No)   | (IS/00S)               | Required   | 10 H |
|                            |           |           |       |                     |                                |                |            |                        |            |      |
|                            |           |           |       |                     | Rail Car Coal Handling Sources | ndling Sources |            |                        |            |      |
| Rotary Car Dumper,         |           |           |       |                     |                                |                |            |                        |            |      |
| BF1 Conveyor Belt,         |           |           |       | Baghouse            |                                |                |            |                        |            |      |
| <b>BF2 Conveyor Belt</b> , | CD, BELT- |           |       | Blower              |                                |                |            |                        |            |      |
| BF1-1 Transfer             | BF1 &2,   |           |       | Discharge           |                                |                |            |                        |            |      |
| Point, BF2-1               | TPBF1-1,  |           |       | Duct                |                                |                |            |                        |            |      |
| Transfer Point             | TPBF2-1   | BH1       | 5     |                     |                                |                |            |                        |            | I    |
| <b>BC1 Conveyor Belt</b>   | BELT1     | ENCL      |       | Outside Belt        |                                |                |            |                        |            |      |
|                            |           |           |       | Baghouse            |                                |                |            |                        |            |      |
|                            |           |           |       | Blower              |                                |                |            |                        |            |      |
|                            |           |           |       | Discharge           |                                |                |            |                        |            |      |
| 1-2 Transfer Point         | TP1-2     | BH2       | 22    | Duct                |                                |                |            |                        |            |      |
| <b>BC2 Conveyor Belt</b>   | BELT2     | ENCL      |       | <b>Outside Belt</b> |                                |                |            |                        |            |      |
| Radial Boom                |           | HEIGHT    |       | At Property         |                                |                |            |                        |            |      |
| Stacker                    | RBS       | WATER     |       | Line                |                                |                |            |                        |            |      |
| <b>BC3 Reclaim Feeder</b>  |           |           |       |                     |                                |                |            |                        |            |      |
| 1, BC3 Conveyor            | RF1,      |           |       |                     |                                |                |            |                        |            |      |
| Belt, BC4 Reclaim          | BELT-3,   |           |       | Baghouse            |                                |                |            |                        |            |      |
| Feeder 2, BC4              | RF2,      |           |       | Blower              |                                |                |            |                        |            |      |
| Conveyor Belt, 3-4-5       | BELT-4,   |           |       | Discharge           |                                |                |            |                        |            |      |
| Transfer Point             | TP3-4-5   | BH3       | 33    | Duct                |                                |                |            |                        |            | I    |
|                            | 20172     |           |       | Outeide Balt        |                                |                |            |                        |            |      |

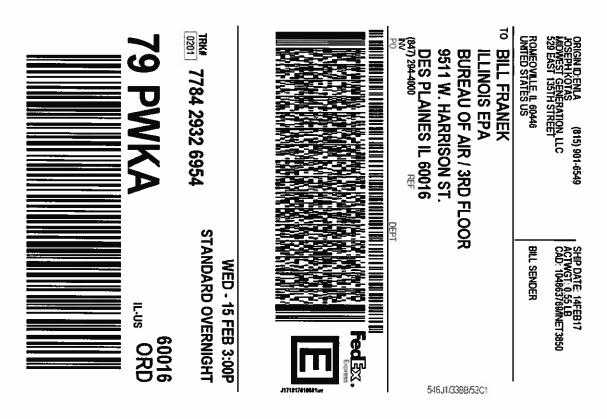
| Emission Unit                               | Emission<br>Unit D | Control<br>Equipment<br>ID | Ventí<br>Stack<br>D | Inspection<br>Point                     | Date and<br>Time of<br>Inspection | Observed<br>Conditions<br>C = Clear<br>V = Minor<br>Emissions<br>X = Excess<br>Emissions | Process In<br>Operation<br>(Yes/No) | Control Equipment<br>In service (IS) or out<br>of service (OOS)<br>(IS/OOS) | Maintenance<br>Required | Method 9 VE<br>results if X =<br>Excess<br>Emissions |
|---------------------------------------------|--------------------|----------------------------|---------------------|-----------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------|-------------------------|------------------------------------------------------|
| BC5-6-U1-U2<br>Junction (Transfer)<br>Tower | JT5-6-U            | BH4                        | V4                  | Baghouse<br>Blower<br>Discharge<br>Duct |                                   |                                                                                          |                                     |                                                                             |                         | Electroni                                            |
|                                             |                    |                            |                     |                                         | Coal Processing Sources           | ing Sources                                                                              |                                     |                                                                             |                         | c Filin                                              |
| Breaker Building<br>Baghouse Exit           | 88                 | BHS                        | V5                  | Discharge<br>Duct                       |                                   |                                                                                          |                                     |                                                                             |                         | ıg: Rec                                              |
| Breaker Building B-C<br>Transfer Point      | TPB-C              | BH6                        | 92                  | Discharge<br>Duct                       |                                   |                                                                                          |                                     |                                                                             |                         | ceived                                               |
|                                             |                    |                            |                     | Outside<br>Breaker                      |                                   |                                                                                          |                                     |                                                                             |                         | Cle                                                  |
| Breaker Building A-B                        |                    |                            | INBLD               | Building at 4<br>walls and              |                                   |                                                                                          | đ                                   |                                                                             |                         | rk's (                                               |
| Transfer Point<br>Breaker Building B1       | 88                 | BH5/ENCL                   | σ                   | roof                                    |                                   |                                                                                          |                                     |                                                                             |                         | Offic                                                |
| Conveyor Belt                               |                    |                            |                     |                                         |                                   |                                                                                          |                                     |                                                                             |                         | e 0                                                  |
| Breaker Building B2<br>Conveyor Belt        |                    |                            |                     |                                         |                                   |                                                                                          |                                     |                                                                             |                         | 7/28/                                                |
|                                             |                    |                            |                     |                                         | Fly Ash Processing Sources        | ssing Sources                                                                            |                                     |                                                                             |                         | 2021                                                 |
|                                             |                    |                            |                     | Baghouse<br>Blower                      |                                   |                                                                                          |                                     |                                                                             |                         |                                                      |
| Units 1&2 - Fly Ash<br>Silo                 | SILO1              | BH8 or BH9<br>TELEC        | V12 or<br>V13       | Discharge<br>Duct                       |                                   |                                                                                          |                                     |                                                                             |                         |                                                      |

Midwest Generation, LLC - Will County Generating Station | Source ID - 197810AAK

| Method 9 VE<br>results if X =<br>Excess<br>Emissions                                     | Electro                     | onic Filing: Received, Clerk's Office 07/28/2021 |
|------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------|
| Maintenance<br>Required                                                                  |                             |                                                  |
| Control Equipment<br>in service (IS) or out<br>of service (OOS)<br>(IS/OOS)              |                             |                                                  |
| Process In<br>Operation<br>(Yes/No)                                                      |                             |                                                  |
| Observed<br>Conditions<br>C = Ctear<br>V = Minor<br>Emissions<br>X = Excess<br>Emissions | :                           |                                                  |
| Date and<br>Time of<br>Inspection                                                        |                             |                                                  |
| Inspection<br>Point                                                                      |                             | Date:                                            |
| Vent/<br>Stack<br>ID                                                                     | V12 or<br>V3                |                                                  |
| Control<br>Equipment<br>ID                                                               | BH8 or BH9<br>TELEC         |                                                  |
| Emission<br>Unit ID                                                                      | SILO2                       | ë                                                |
| Emission Unit                                                                            | Units 3&4 - Fly Ash<br>Silo | Operator's Signature:                            |

Midwest Generation, LLC - Will County Generating Station | Source ID - 197810AAK

| Month:      |         |                                                       | Year:                          |                                    | Coal Pile Treatments                           | reatments                                        | Roadwa)<br>Wagon/ Stri<br>in i         | Roadways – Water<br>Wagon/ Street Sweeper<br>in use |                      |                                                           |                                                                                |
|-------------|---------|-------------------------------------------------------|--------------------------------|------------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------------------|-----------------------------------------------------|----------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|
| Date        | Time    | Daily Low<br>Ambient<br>Temp. °F                      | 24 hr rain<br>fatl<br>{inches) | Max 1<br>hr Wind<br>Speed<br>(moh) | Water<br>Treatments<br>Active Storage<br>(Y/N) | Water<br>Treatments<br>Inactive<br>Storage (Y/N) | Paved<br>Roads<br>(ww/SS) <sup>1</sup> | Unpaved<br>Roads<br>(WW/SS) <sup>1</sup>            | Operator<br>Initials | Number of<br>Water<br>Wagon<br>Trips/<br>Dav <sup>2</sup> | Comments,<br>Equipment<br>OOS, Problems<br>& Work Orders                       |
| -           |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 5           |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 'n          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 4           |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| ŝ           |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 9           |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| ~           |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| ω           |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 6           |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 10          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 1           |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 12          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 13          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 14          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 15          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 16          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 17          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 18          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 19          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 20          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 21          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 22          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 23          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 24          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 25          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 26          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 27          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 28          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 29          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 90          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| 31          |         |                                                       |                                |                                    |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |
| · MM        | = water | <sup>1</sup> . WW = water wagon, SS = street sweeper. | 3 = street                     | sweeper.                           | 2                                              | gon Holds 6,                                     | 000 gallons                            | s of water, s                                       | spraying a           | 30 foot hori                                              | Water Wagon Holds 6,000 gallons of water, spraying a 30 foot horizontal width. |
|             | RVISOF  | SUPERVISOR REVIEW                                     |                                | •                                  |                                                |                                                  | )                                      |                                                     | •                    |                                                           |                                                                                |
| 1<br>5<br>> | )))))   |                                                       |                                | 1                                  |                                                |                                                  |                                        |                                                     |                      |                                                           |                                                                                |




#### After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewetry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.



#### After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.



February 23,2017

Dear Customer:

The following is the proof-of-delivery for tracking number 778429275662.

| Delivery Information:              |                                             |                                     |                             |
|------------------------------------|---------------------------------------------|-------------------------------------|-----------------------------|
| Status:<br>Signed for by:          | Delivered<br>J.BAKER                        | Delivered to:<br>Delivery location: | Mailroom<br>SPRINGFIELD, IL |
| Service type:<br>Special Handling: | FedEx Standard Overnight<br>Deliver Weekday | Delivery date:                      | Feb 15, 2017 09:21          |

Signature image is available. In order to view image and detailed information, the shipper or payor account number of the shipment must be provided.

| 778429275662 | Ship date:   | Feb 14, 2017   |                                    |
|--------------|--------------|----------------|------------------------------------|
|              | Weight:      | 0.5 lbs/0.2 kg |                                    |
|              | Shipper:     |                |                                    |
|              | 778429275662 | Weight:        | Weight: 0.5 lbs/0.2 kg<br>Shipper: |

Thank you for choosing FedEx.



February 23,2017

Dear Customer:

The following is the proof-of-delivery for tracking number 778429326954.

| Delivery Information:              |                                             |                                     |                                            |
|------------------------------------|---------------------------------------------|-------------------------------------|--------------------------------------------|
| Status:<br>Signed for by:          | Delivered<br>K.PRICE                        | Delivered to:<br>Delivery location: | Receptionist/Front Desk<br>Des Plaines, IL |
| Service type:<br>Special Handling: | FedEx Standard Overnight<br>Deliver Weekday | Delivery date:                      | Feb 15, 2017 10:48                         |

Signature image is available. In order to view image and detailed information, the shipper or payor account number of the shipment must be provided.

| Shipping Information: |              |                   |                |  |
|-----------------------|--------------|-------------------|----------------|--|
| Tracking number:      | 778429326954 | Ship date:        | Feb 14, 2017   |  |
|                       |              | Weight:           | 0.5 lbs/0.2 kg |  |
| Recipient:            |              | Shipper:          |                |  |
| Des Plaines, IL US    |              | Romeoville, IL US |                |  |

Thank you for choosing FedEx.

# **Petitioner's Hearing Exhibit S**

## Illinois

## **Ambient Air Monitoring**

## 2022 Network Plan



**Illinois Environmental Protection Agency** 

# **Bureau of Air**

June 2021

#### Table of Contents

| Acronyms                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                    |
| Monitoring Designations                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                    |
| Monitoring Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                    |
| Spatial Scale Designations                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                    |
| Sampling Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                    |
| Quality Assurance                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                    |
| Droposed Network for 2022                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                                                                    |
| Proposed Network for 2022                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                    |
| Ozone (O <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                    |
| Particulate Matter (PM <sub>2.5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                    |
| Sulfur Dioxide (SO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                    |
| Nitrogen Dioxide (NO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                    |
| Carbon Monoxide (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                    |
| Particulate Matter (PM <sub>10</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                    |
| Lead (Pb)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |
| Photochemical Assessment Monitoring Stations (PAMS)                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |
| Tables and Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| Tables and Figures         Table 1: Illinois Monitoring Network by Pollutant                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |
| Table 1: Illinois Monitoring Network by Pollutant                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                   |
| Table 1: Illinois Monitoring Network by Pollutant         Table 2: Ozone Sites                                                                                                                                                                                                                                                                                                                                                                                    | 14<br>16                                                             |
| Table 1: Illinois Monitoring Network by Pollutant         Table 2: Ozone Sites         Figure 2a: Ozone Sites – Illinois                                                                                                                                                                                                                                                                                                                                          | 14<br>16<br>17                                                       |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago Area                                                                                                                                                                                                                                                                                                              | 14<br>16<br>17<br>18                                                 |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 Sites                                                                                                                                                                                                                                                                                          | 14<br>16<br>17<br>18<br>23                                           |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 SitesFigure 3a: PM2.5 Sites – IllinoisFigure 3b: PM2.5 Sites – Illinois Chicago AreaTable 4: SO2 Sites                                                                                                                                                                                         | 14<br>16<br>17<br>18<br>23<br>24<br>25                               |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 SitesFigure 3a: PM2.5 Sites – IllinoisFigure 3b: PM2.5 Sites – Illinois Chicago Area                                                                                                                                                                                                           | 14<br>16<br>17<br>18<br>23<br>24<br>25                               |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 SitesFigure 3a: PM2.5 Sites – IllinoisFigure 3b: PM2.5 Sites – Illinois Chicago AreaTable 4: SO2 Sites                                                                                                                                                                                         | 14<br>16<br>17<br>18<br>23<br>24<br>25<br>26                         |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 SitesFigure 3a: PM2.5 Sites – IllinoisFigure 3b: PM2.5 Sites – Illinois Chicago AreaTable 4: SO2 SitesFigure 4: SO2 Sites – Illinois                                                                                                                                                           | 14<br>16<br>17<br>18<br>23<br>24<br>25<br>26<br>27                   |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 SitesFigure 3a: PM2.5 Sites – IllinoisFigure 3b: PM2.5 Sites – Illinois Chicago AreaTable 4: SO2 SitesFigure 4: SO2 Sites – IllinoisFigure 5: NO2 Sites – IllinoisFigure 5: NO2 Sites – IllinoisTable 6: CO Sites                                                                              | 14<br>16<br>17<br>18<br>23<br>24<br>25<br>26<br>26<br>27<br>28<br>29 |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 SitesFigure 3a: PM2.5 Sites – IllinoisFigure 3b: PM2.5 Sites – Illinois Chicago AreaTable 4: SO2 SitesFigure 4: SO2 SitesFigure 5: NO2 SitesFigure 5: NO2 SitesFigure 5: NO2 SitesFigure 6: CO SitesFigure 6: CO Sites                                                                         | 14<br>16<br>17<br>18<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 SitesFigure 3a: PM2.5 Sites – IllinoisFigure 3b: PM2.5 Sites – Illinois Chicago AreaTable 4: SO2 SitesFigure 4: SO2 Sites – IllinoisTable 5: NO2 Sites – IllinoisFigure 5: NO2 Sites – IllinoisFigure 5: NO2 Sites – IllinoisTable 6: CO SitesFigure 6: CO Sites – IllinoisTable 7: PM10 Sites | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 SitesFigure 3a: PM2.5 Sites – IllinoisFigure 3b: PM2.5 Sites – Illinois Chicago AreaTable 4: SO2 SitesFigure 4: SO2 SitesFigure 5: NO2 Sites – IllinoisFigure 5: NO2 Sites – IllinoisFigure 6: CO SitesFigure 6: CO Sites – IllinoisFigure 7: PM10 SitesFigure 7: PM10 Sites – Illinois        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                |
| Table 1: Illinois Monitoring Network by PollutantTable 2: Ozone SitesFigure 2a: Ozone Sites – IllinoisFigure 2b: Ozone Sites – Illinois Chicago AreaTable 3: PM2.5 SitesFigure 3a: PM2.5 Sites – IllinoisFigure 3b: PM2.5 Sites – Illinois Chicago AreaTable 4: SO2 SitesFigure 4: SO2 Sites – IllinoisTable 5: NO2 Sites – IllinoisFigure 5: NO2 Sites – IllinoisFigure 5: NO2 Sites – IllinoisTable 6: CO SitesFigure 6: CO Sites – IllinoisTable 7: PM10 Sites | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                |

Appendix A – Data Requirements Rule Sulfur Dioxide Emissions Assessment ......35

## Acronyms

| AQI                  | Air Quality Index                                                           |
|----------------------|-----------------------------------------------------------------------------|
| AQS                  | Air Quality System                                                          |
| BAM                  | Beta Attenuation Monitor                                                    |
| CAA                  | Clean Air Act                                                               |
| CASTNET              | Clean Air Status and Trends Network                                         |
| CCDES                | Cook County Department of Environment and Sustainability                    |
| CFR                  | Code of Federal Regulations                                                 |
| CO                   | Carbon Monoxide                                                             |
| FEM                  | Federal Equivalent Method                                                   |
| FRM                  | Federal Reference Method                                                    |
| GECC                 | Gateway Energy & Coke Company                                               |
| IEPA or              | Illinois Environmental Protection Agency                                    |
| Illinois EPA         | Innois Environmental Protection Agency                                      |
| IMPROVE              | Interagency Monitoring of Protected Visual Environments                     |
| MSA                  | Metropolitan Statistical Area                                               |
| NAAQS                | National Ambient Air Quality Standards                                      |
| NCore                | National Core multi-pollutant station                                       |
| NO                   | Nitric Oxide                                                                |
| NO <sub>2</sub>      | Nitrogen Dioxide                                                            |
| NO <sub>x</sub>      | Nitrogen Oxides                                                             |
| NO <sub>y</sub>      | Total Reactive Nitrogen Oxides                                              |
| NPS                  | National Park Service                                                       |
| 03                   | Ozone                                                                       |
| PAMS                 | Photochemical Assessment Monitoring Station                                 |
| Pb                   | Lead                                                                        |
| PM <sub>2.5</sub>    | Particulate matter with a diameter less than or equal to 2.5 micrometers    |
| PM <sub>10</sub>     | Particulate matter with a diameter less than or equal to 10 micrometers     |
| PM <sub>10-2.5</sub> | Particulate matter with a diameter less than or equal to 10 micrometers and |
| 10 210               | greater than or equal to 2.5 micrometers                                    |
| ppb                  | Parts per billion                                                           |
| ppm                  | Parts per million                                                           |
| PWEI                 | Population Weighted Emissions Index                                         |
| QA                   | Quality Assurance                                                           |
| SASS                 | Speciation Air Sampling System                                              |
| SLAMS                | State or Local Air Monitoring Station                                       |
| SO <sub>2</sub>      | Sulfur Dioxide                                                              |
| SPM                  | Special Purpose Monitor                                                     |
| STN                  | Speciation Trends Network                                                   |
| SWS                  | State Water Survey                                                          |
| TSP                  | Total Suspended Particulate                                                 |
| USEPA                | United States Environmental Protection Agency                               |
| UV                   | Ultraviolet                                                                 |
| VOC                  | Volatile Organic Compounds                                                  |

#### **Introduction**

In 1970, Congress enacted the Clean Air Act (CAA), empowering the United States Environmental Protection Agency (USEPA) to develop and implement National Ambient Air Quality Standards (NAAQS) for pollutants shown to threaten human health.

NAAQS exist for six criteria pollutants – carbon monoxide (CO), ozone (O<sub>3</sub>), lead (Pb), nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), particulate matter with a diameter less than or equal to 10 micrometers (PM<sub>10</sub>), and fine particulate matter (PM<sub>2.5</sub>). There are primary and secondary NAAQS. Primary standards protect public health, whereas secondary standards protect public welfare including the environment.

A predominant goal of the air monitors within Illinois' network is to collect data with which to assess compliance with the NAAQS. A listing of these NAAQS calculations and contributions can be found at https://www.epa.gov/criteria-air-pollutants/naaqs-table.

Illinois has designed its ambient air monitoring network to provide timely air pollution data to the public, support compliance with ambient air quality standards and emissions strategy development, and support air pollution research studies. Data gathered from the Illinois EPA's monitoring network is used to produce a daily Air Quality Index (AQI) report, compile daily air quality forecast reports, support short- and long-term health risk assessments, identify localized health concerns, and track long-term trends in air quality that could potentially threaten Illinois citizen's quality of life.

The Illinois air monitoring network includes monitors for the seven criteria pollutants: CO, O<sub>3</sub>, Pb, NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub>, and PM<sub>2.5</sub>. The Illinois air monitoring network meets or, in most cases, exceeds the applicable minimum network requirements.

Monitor siting takes into consideration: peak (the highest concentration of pollution in a given area), population (presence of pollutants in areas with high population densities), source (pollution resulting from significant sources or source categories), background (general pollutant levels), and transport (extent of regional pollutant transport between populated areas). Federal regulations prescribe requirements for monitor and probe siting to ensure that the ambient air quality data is accurately representative. The criteria for the placement and operation of each monitor and probe vary. Site surveys ensure that each requirement is satisfied.

Federal regulations require each State to submit to USEPA an air monitoring network plan annually for the prospective year. Additionally, a five-year network assessment must be completed by USEPA Region 5 monitoring organizations. The last five-year network assessment was completed in 2020 and found the criteria pollutant monitoring network was adequate in meeting USEPA's minimum criteria. The next network assessment will be completed in 2025. The annual network plans take into consideration findings of these assessments. The annual network plan provides a description of the monitoring network for each criteria pollutant including proposed changes. The air monitoring network plan is subject to public review and comment prior to its submission to the USEPA.

### **Monitoring Designations**

The following designations describe the various types of monitors at the sites within Illinois' air monitoring network:

- **NCore** National Core multi-pollutant monitoring station. Illinois is required by federal regulations to operate one NCore site, which includes monitors for CO, nitric oxide/reactive nitrogen (NO/NO<sub>y</sub>), SO<sub>2</sub>, O<sub>3</sub>, PM<sub>10</sub>, speciated PM<sub>2.5</sub>, PM<sub>2.5</sub>, PM<sub>10-2.5</sub>, wind speed, wind direction, relative humidity, and ambient temperature. Illinois operates an NCore site in Northbrook and provides support for the federal rural NCore site located in Bondville measuring PM<sub>2.5</sub>.
- **Near-road** Placed near busy roadways, near-road sites measure hourly concentrations of NO<sub>2</sub> and sometimes CO or PM<sub>2.5</sub> in urban areas. Illinois EPA operates two near-road locations, one in Chicago and one in Lansing. The Lansing near-road location began operating off the Kingery Expressway on March 1, 2019. The Chicago near-road location, along the Kennedy Expressway, began operating July 26, 2019.
- **PAMS** Photochemical Assessment Monitoring Station. In addition to monitoring of criteria pollutants, Illinois also participates in a regional Photochemical Assessment Monitoring Station (PAMS) network in the Chicago area that is part of the USEPA approved "Alternate Plan for the Regional Lake Michigan PAMS Network." This regional PAMS network focuses on both the Milwaukee and Chicago areas that are classified as ozone nonattainment areas. These sites are dedicated to obtaining more information about ozone and its precursors. The Illinois sites participating in the 2022 regional PAMS network will include enhanced monitoring in Schiller Park as well as regulatorily-required monitoring in Northbrook. Illinois' regional PAMS sites will collect and monitor some or all of the following: speciated volatile organic compounds (VOCs), carbonyls, NO<sub>2</sub>, NO/NO<sub>y</sub>, O<sub>3</sub>, CO, and meteorological data in order to monitor potential threats of nonattainment.
- **SLAMS** State or Local Ambient Monitoring Station. SLAMS monitoring is for comparison to the NAAQS.
- **SPM** Special Purpose Monitor. The monitors in this category are included in the Agency network but do not apply toward the determination of area NAAQS compliance.

Siting and operation, including collocation requirements, of each monitor meets the requirements of Part 58 Appendices A, B, C, D, and E.

### **Monitoring Objectives**

Monitoring objectives describe the various purposes of the monitors within Illinois' air monitoring network:

- **General Concentration (Background)** These sites are positioned to measure the general background concentration of pollutants in an area.
- **Highest Concentration (Highest Conc.)** These sites are located to determine the expected peak concentrations of pollutants in an area.

- **Population** Located in areas categorized by high population density, these sites are used to determine the typical pollutant concentrations in a specific area.
- **Regional Transport (Transport)** These sites are located to monitor the level of regional pollution transport from one area to the next.
- **Source-Oriented Source (Source)** As certain sources contribute to pollution more significantly than others, source-oriented monitors are placed in order to identify the impact of these sources.

#### **Spatial Scale Designations**

Sites are not only characterized by type and by the objective, but also according to spatial scale. These scales are used to categorize siting areas and link them with the specific monitoring objectives. Spatial scales as outlined by the USEPA include:

- **Micro** Concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- **Middle** Concentrations typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.
- **Neighborhood** Concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range.
- Urban Overall, citywide conditions with dimensions on the order of four to 50 kilometers.
- **Regional** A rural area of reasonably homogenous geography without large sources, extending from tens to hundreds of kilometers.

#### Sampling Methodology

Every ambient air monitor can be classified by a specific method number which identifies sample collection and analysis methods. A comprehensive list of these numbers can be found at: <u>https://www.epa.gov/aqs/aqs-code-list</u>.

Federal regulations specify that monitoring methods used for comparison to the NAAQS must be Federal Reference or Equivalent Methods (FRM or FEM). Almost all monitors listed in Illinois' network plan use either FRM or FEM with only a few exceptions. Locations hosting continuous  $PM_{2.5}$  samplers solely for AQI purposes are not operated as FRM or FEM.

#### **Quality Assurance**

Guidance, policies, and federal regulations establish quality system requirements for data submitted to USEPA. Currently, there are two Primary Quality Assurance Organizations under this network plan – the Illinois EPA and the Cook County Department of Environment and Sustainability (CCDES).

### Proposed Network for 2022

### **Ozone**

Illinois is required to operate a minimum of 14 O<sub>3</sub> monitoring sites across the state to meet SLAMS O<sub>3</sub> requirements. NCore requires the operation of one O<sub>3</sub> monitor year-round. Additionally, 19 other O<sub>3</sub> monitors are operated for purposes of supporting the basic monitoring objectives of public data reporting, air quality mapping, compliance, enhanced monitoring, and supporting air pollution research studies. In 2021, Illinois operated 33 O<sub>3</sub> monitors. Additionally, USEPA operated three ozone monitors as part of the Clean Air Status and Trends Network (CASTNET). The number of ozone monitors will not change in 2022.

Discussions are currently ongoing with the property owner of the Maryville ozone monitoring location. The property owner has indicated construction will take place in the area of the current monitoring trailer. It is not yet known whether the property owner will allow the trailer to be moved elsewhere at the current location or whether a new location will need to be established.

### Fine Particulate Matter (PM<sub>2.5</sub>)

Illinois is required to operate a minimum of 13 FRM or FEM PM<sub>2.5</sub> monitors. NCore requires one continuous and one filter based PM<sub>2.5</sub> monitor. One near-road monitoring site with one FRM or FEM PM<sub>2.5</sub> monitor is also required. Illinois must operate at least one FRM or FEM PM<sub>2.5</sub> site monitoring regional background and at least one FRM or FEM PM<sub>2.5</sub> site to monitor regional transport. Additionally, 18 other PM<sub>2.5</sub> monitoring sites are operated for purposes of supporting the basic monitoring objectives of public data reporting, air quality mapping, compliance, and supporting air pollution research studies. Depending on funding availability, monitoring site logistics, and manufacturer repair status, additional primary designated PM<sub>2.5</sub> monitors will be switched from manual filter-based FRM monitors to continuous FEM monitors. As of May 2021, monitors that have FEM continuous units include Bondville, Braidwood, Decatur, Des Plaines, Houston, Jerseyville, Joliet, Knight Prairie, Lansing near-road, Naperville, Normal, Northbrook, Peoria, Rock Island, Rockford, and Springfield. The sites that currently are planned to have FEM monitors between 2021 and 2022 are listed in Table 3.

Illinois EPA initially planned to install new PM<sub>2.5</sub> FEM monitors at several locations starting in 2020. After delays caused by Covid, Illinois EPA now plans to begin this work in 2021. Some of these new monitors will replace existing FEM monitors while others will replace FRM monitors. Illinois EPA is currently focusing on discontinuing aging Anderson single event monitors (method code 153) as well as removing problematic Thermo 5014i continuous FEM monitors (method code 183). At sites where monitors will be changed, Teledyne T640s (method code 236) will be used. The first round of changes in 2021 includes replacing the Thermo 5014i FEM monitors at Braidwood, Joliet, Knight Prairie, Lansing near-road, Naperville, Northbrook, Rock Island, and Rockford. The Agency is also planning on converting FRM monitors to FEM monitors. At Alton, the FRM BGIs will be moved to Aurora which will allow aging Andersons to be removed from the network and eliminate collocation requirements for that method. Illinois EPA plans to replace additional Thermo 5014i monitors after the next round of

purchasing in 2021 and 2022. The next round of 2021 and 2022 changes in monitoring methods include switching the Thermo 5014i continuous FEM monitors with Teledyne T640 continuous FEM monitors at the following locations: Decatur, Des Plaines, East St. Louis, Houston, Jerseyville, Normal, Peoria, Springfield, and Wood River. Champaign is also planned to be switched to a T640 when a suitable replacement site is found.

A new monitoring location was established in 2020 in Alton at the Horace Mann Elementary School, 2708 Edwards Street, measuring ozone. This location is approximately two blocks from the existing  $PM_{2.5}$  location at the SIU Dental Clinic, 1700 Annex Street. Illinois EPA requested and was approved by USEPA for site relocation and consolidation of the  $PM_{2.5}$  monitoring equipment to the new location at Horace Mann Elementary School.

Due to roof construction at the Northbrook NCore location in 2020, all particulate samplers were moved to a lower level roof at the water plant. The samplers change in location was approximately 80 feet to the northeast from the former location.

In 2021, 34  $PM_{2.5}$  sites were operating in Illinois. In 2022, the number of  $PM_{2.5}$  sites will not change.

#### Sulfur Dioxide

Illinois is required to operate six SO<sub>2</sub> monitors. One SO<sub>2</sub> monitor is required at each of the Northbrook and Bondville NCore sites to fulfill NCore requirements. The Illinois State Water Survey operates the Bondville SO<sub>2</sub> monitor. Additionally, five SO<sub>2</sub> monitoring sites are operated in Illinois' network supporting the basic monitoring objectives of public data reporting, air quality mapping, compliance, and supporting air pollution research studies. SO<sub>2</sub> data requirements established by USEPA require either modeling or monitoring to characterize current air quality in areas with large sources of SO<sub>2</sub> (40 CFR 51 Subpart BB). Tate & Lyle are contracting with Environmental Resources Management, Inc. operating two SO<sub>2</sub> monitors under this rule.

A total of  $12 \text{ SO}_2$  monitors were operated in Illinois in 2021. In 2022, the number of SO<sub>2</sub> sites will remain at twelve.

#### Nitrogen Dioxide

Illinois is required to operate two near-road NO<sub>2</sub> monitors. In addition to area-wide monitors, federal regulations require the Regional Administrator to collaborate with each State in determining the need for additional NO<sub>2</sub> monitoring requirements beyond the minimum, with a primary focus on siting monitors in locations to protect susceptible and vulnerable populations. In Illinois, two NO<sub>2</sub> monitoring sites are designated, East St. Louis and ComEd, as susceptible and vulnerable population monitoring sites. Illinois operates one NO/NO<sub>y</sub> monitor in Northbrook. Additionally, the Illinois State Water Survey operates an NO/NO<sub>y</sub> monitor at the rural NCore site in Bondville.

During the spring of 2021, Illinois EPA will install a direct measure NO<sub>2</sub> monitor at the NCore site in Northbrook to meet new Photochemical Assessment Monitoring Station requirements. This monitor will be installed before the June 1, 2021, required start date.

In 2021, the monitoring network consisted of eight  $NO_2$  monitoring sites. Two  $NO/NO_y$  monitors will continue to be operated by Illinois EPA and the State Water Survey. In 2022, the number of  $NO_2$  sites will remain at eight.

#### Carbon Monoxide

Illinois must operate one CO monitor in conjunction with one near-road NO<sub>2</sub> monitor. In addition, it must operate one CO monitor at NCore sites, Northbrook and Bondville. (The Illinois State Water Survey operates the Bondville CO monitor at the rural NCore site.) An additional CO monitoring site is operated in Illinois' network supporting the basic monitoring objectives of public data reporting, air quality mapping, compliance, and supporting air pollution research studies. In 2021, three CO monitors were in operation. The number of CO monitors will not change in 2022.

### Particulate Matter (PM10)

Illinois must operate three  $PM_{10}$  monitors to satisfy MSA requirements. One  $PM_{10}$  monitor must also be operated for NCore purposes. Additionally, Illinois operates one  $PM_{10-2.5}$  (PM coarse) monitor at the Northbrook location to fulfill NCore requirements. The National Park Service operates one  $PM_{10}$  monitor at the Bondville NCore location. In 2021, Illinois EPA operated a total of four  $PM_{10}$  monitoring sites. In 2022, Illinois EPA will continue to operate four  $PM_{10}$ monitors and one  $PM_{10-2.5}$  monitor.

### Lead

Illinois is required to operate source-oriented monitors near facilities emitting 0.5 tons/year of lead that also have maximum lead concentrations in ambient air in excess of 50 percent of the NAAQS unless a waiver for that site has been approved. Lead monitoring waivers are currently in place with USEPA for Kincaid Generation Power Plant, Keystone Steel & Wire Corporation, Sterling Steel Corporation, Gateway Energy and Coke Company, and Gunite Corporation. The waivers were approved by USEPA in 2017 for Kincaid, in 2018 for Keystone Steel, Sterling Steel, and Gunite, and in 2020 for Gateway Energy and Coke Company. Waivers must be renewed every five years. Modeling and/or monitoring results for these facilities demonstrated that they do not have the potential to contribute to a maximum lead concentration greater than 50 percent of the NAAQS.

In 2021, Olin Corporation began operating a special purpose lead monitor in Alton measuring lead concentrations at its facility for a period of at least one year. With the addition of the Alton lead monitor, the number of lead sites will increase from three to four. In 2022, Illinois EPA will continue to operate four lead monitors.

#### **Photochemical Assessment Monitoring**

Illinois is required to collect and report additional PAMS measurements at the Northbrook monitoring location by June 1, 2021. At a minimum, Illinois plans to add to the existing PAMS measurements the following items:

Hourly average speciated volatile organic compounds, three eight-hour carbonyls samples on a one-in-three day schedule, true nitrogen dioxide, hourly precipitation, and averaged mixing height. In addition, new solar radiation and ultraviolet radiation sensors will be procured. Illinois plans to run these additional items during the months of June, July, and August.

| AQS ID      | County    | City              | Address                        | Site Description                      | Owner | со | NO <sub>2</sub> | NOy | SO <sub>2</sub> | 03 | PM <sub>10</sub> /<br>Coarse | PM <sub>2.5</sub> | Pb |
|-------------|-----------|-------------------|--------------------------------|---------------------------------------|-------|----|-----------------|-----|-----------------|----|------------------------------|-------------------|----|
| 17-001-0007 | Adams     | Quincy            | 1301 S. 48th St                | John Wood Community<br>College        | IEPA  |    |                 |     |                 | х  |                              |                   |    |
| 17-019-0006 | Champaign | Champaign         | 904 N. Walnut                  | Ameren Substation<br>Platform         | IEPA  |    |                 |     |                 |    |                              | х                 |    |
| 17-019-0007 | Champaign | Thomasboro        | North Thomas St.               | Resident's Building                   | IEPA  |    |                 |     |                 | х  |                              |                   |    |
| 17-019-1001 | Champaign | Bondville         | Twp. Rd. 500 E.                | State Water Survey<br>Climate Station | SWS   | х  |                 | х   | х               |    |                              |                   |    |
| 17-019-1001 | Champaign | Bondville         | Twp. Rd. 500 E.                | State Water Survey<br>Climate Station | IEPA  |    |                 |     |                 |    |                              | х                 |    |
| 17-019-1001 | Champaign | Bondville         | Twp. Rd. 500 E.                | CASTNET Station                       | USEPA |    |                 |     |                 | х  |                              |                   |    |
| 17-019-1001 | Champaign | Bondville         | Twp. Rd. 500 E.                | IMPROVE Station                       | NPS   |    |                 |     |                 |    | PM <sub>10</sub> /<br>Coarse |                   |    |
| 17-031-0001 | Cook      | Alsip             | 4500 W. 123rd St.              | Village Garage                        | CCDES |    |                 |     |                 | х  |                              | х                 |    |
| 17-031-0022 | Cook      | Chicago           | 3535 E. 114th St               | Washington High School                | CCDES |    |                 |     |                 |    | х                            | х                 | х  |
| 17-031-0032 | Cook      | Chicago           | 3300 E. Cheltenham Pl.         | South Water Filtration<br>Plant       | CCDES |    |                 |     |                 | х  |                              |                   |    |
| 17-031-0052 | Cook      | Chicago           | 4850 Wilson Ave.               | Mayfair Pump Station                  | CCDES |    |                 |     |                 |    |                              | х                 |    |
| 17-031-0057 | Cook      | Chicago           | 1745 N. Springfield Ave.       | Springfield Pump Station              | CCDES |    |                 |     |                 |    |                              | х                 |    |
| 17-031-0076 | Cook      | Chicago           | 7801 Lawndale                  | Com Ed Maintenance<br>Bldg. Trailer   | CCDES |    | х               |     | х               | х  |                              | х                 |    |
| 17-031-0110 | Cook      | Chicago           | 1241 19th St.                  | Perez Elementary School               | CCDES |    |                 |     |                 |    |                              |                   | х  |
| 17-031-1003 | Cook      | Chicago           | 6545 W. Hurlbut St.            | Taft High School                      | CCDES |    |                 |     |                 | х  |                              |                   |    |
| 17-031-0119 | Cook      | Lansing           | Kingery Expy & Torrence Ave.   | Kingery Near-road #1                  | IEPA  | х  | х               |     |                 |    |                              | х                 |    |
| 17-031-0219 | Cook      | Chicago           | Kennedy Expy & W. Webster Ave. | Kennedy Near-road #2                  | IEPA  |    | х               |     |                 |    |                              |                   |    |
| 17-031-1016 | Cook      | Lyons<br>Township | 50th St. & Glencoe             | Village Hall                          | IEPA  |    |                 |     |                 |    | х                            | Х                 |    |

## Table 1: Illinois Monitoring Network by Criteria Pollutant

| AQS ID      | County     | City                  | Address                   | Site Description          | Owner | со | NO <sub>2</sub> | NOy | SO <sub>2</sub> | 03 | PM <sub>10</sub> /<br>Coarse | PM <sub>2.5</sub> | Pb |
|-------------|------------|-----------------------|---------------------------|---------------------------|-------|----|-----------------|-----|-----------------|----|------------------------------|-------------------|----|
| 17-031-1601 | Cook       | Lemont                | 729 Houston               | Lemont Trailer            | CCDES |    |                 |     | х               | х  |                              |                   |    |
| 17-031-3103 | Cook       | Schiller Park         | 4743 Mannheim Rd.         | Schiller Park Trailer     | IEPA  |    | х               |     |                 | х  |                              | х                 |    |
| 17-031-3301 | Cook       | Summit                | 60th St. & 74th Ave.      | Graves Elementary School  | CCDES |    |                 |     |                 |    |                              | х                 |    |
| 17-031-4002 | Cook       | Cicero                | 1820 S. 51st Ave.         | Cicero Trailer            | CCDES |    | х               |     |                 | х  |                              |                   |    |
| 17-031-4007 | Cook       | Des Plaines           | 9511 W. Harrison St.      | Regional Office Bldg.     | IEPA  |    |                 |     |                 | х  |                              | х                 |    |
| 17-031-4201 | Cook       | Northbrook            | 750 Dundee Rd.            | Northbrook Water Plant    | IEPA  | х  | х               | х   | х               | х  | Coarse                       | х                 |    |
| 17-031-6005 | Cook       | Cicero                | 13th St. & 50th Ave.      | Liberty School            | CCDES |    |                 |     |                 |    |                              | х                 |    |
| 17-031-7002 | Cook       | Evanston              | 531 E. Lincoln            | Evanston Water Plant      | IEPA  |    |                 |     |                 | х  |                              |                   |    |
| 17-043-4002 | DuPage     | Naperville            | 400 S. Eagle St.          | City Hall                 | IEPA  |    |                 |     |                 |    |                              | х                 |    |
| 17-043-6001 | DuPage     | Lisle                 | Route 53                  | Morton Arboretum          | IEPA  |    |                 |     |                 | х  |                              |                   |    |
| 17-049-1001 | Effingham  | Effingham             | 10421 N. US Hwy. 45       | Central Grade School      | IEPA  |    |                 |     |                 | х  |                              |                   |    |
| 17-065-0002 | Hamilton   | Knight Prairie<br>Twp | Route 14                  | Knight Prairie Trailer    | IEPA  |    |                 |     |                 | х  |                              | х                 |    |
| 17-083-0117 | Jersey     | Jerseyville           | 21965 Maple Summit Rd.    | Jerseyville Trailer       | IEPA  |    |                 |     |                 | х  |                              | х                 |    |
| 17-085-9991 | Jo Daviess | Stockton              | 10952 E. Parker Rd.       | CASTNET Station           | USEPA |    |                 |     |                 | х  |                              |                   |    |
| 17-089-0003 | Kane       | Elgin                 | 258 Lovell St.            | McKinley School           | IEPA  |    |                 |     |                 |    |                              | х                 |    |
| 17-089-0005 | Kane       | Elgin                 | 665 Dundee Rd.            | Larsen Junior High School | IEPA  |    |                 |     |                 | х  |                              |                   |    |
| 17-089-0007 | Kane       | Aurora                | 1240 N. Highland          | Health Department         | IEPA  |    |                 |     |                 |    |                              | х                 |    |
| 17-097-1007 | Lake       | Zion                  | Illinois Beach State Park | Zion Trailer              | IEPA  |    |                 |     |                 | х  |                              |                   |    |
| 17-099-0007 | La Salle   | Oglesby               | 308 Portland Ave.         | Oglesby Trailer           | IEPA  |    |                 |     | х               |    |                              |                   |    |

| AQS ID      | County      | City              | Address                    | Site Description                     | Owner    | со | NO2 | NOy | SO₂ | <b>O</b> 3 | PM <sub>10</sub> /<br>Coarse | PM <sub>2.5</sub> | Pb |
|-------------|-------------|-------------------|----------------------------|--------------------------------------|----------|----|-----|-----|-----|------------|------------------------------|-------------------|----|
| 17-111-0001 | McHenry     | Cary              | First St. & Three Oaks Rd. | Cary Grove High School               | IEPA     |    |     |     |     | х          |                              | х                 |    |
| 17-113-2003 | McLean      | Normal            | Main & Gregory             | Normal-ISU Physical Plant<br>Trailer | IEPA     |    |     |     |     | х          |                              | х                 |    |
| 17-115-0013 | Macon       | Decatur           | 2200 N. 22nd St.           | Decatur Trailer                      | IEPA     |    |     |     | х   | х          |                              | х                 |    |
| 17-115-0217 | Macon       | Decatur           | Folk & E. Marietta Sts.    | Tate & Lyle Northwest                | ERM Inc. |    |     |     | х   |            |                              |                   |    |
| 17-115-0317 | Macon       | Decatur           | El Dorado St.              | Tate & Lyle Southeast                | ERM Inc. |    |     |     | х   |            |                              |                   |    |
| 17-117-0002 | Macoupin    | Nilwood           | Heaton & Dubois            | Nilwood Trailer                      | IEPA     |    | х   |     | х   | х          |                              |                   |    |
| 17-119-0120 | Madison     | Alton             | 2708 Edwards St.           | Horace Mann School                   | IEPA     |    |     |     |     | х          |                              | х                 |    |
| 17-119-0121 | Madison     | Alton             | Powder Mill Rd.            | Olin Corporation                     | IEPA     |    |     |     |     |            |                              |                   | х  |
| 17-119-0010 | Madison     | Granite City      | 15th & Madison             | Air Products                         | IEPA     |    |     |     |     |            |                              |                   | х  |
| 17-119-0024 | Madison     | Granite City      | 2100 Madison               | Gateway Medical Center               | IEPA     |    |     |     |     |            |                              | х                 |    |
| 17-119-1007 | Madison     | Granite City      | 23rd. & Madison            | Fire Station # 1                     | IEPA     |    |     |     |     |            | х                            | х                 |    |
| 17-119-1009 | Madison     | Maryville         | 200 W. Division            | Maryville Trailer.                   | IEPA     |    |     |     |     | х          |                              |                   |    |
| 17-119-3007 | Madison     | Wood River        | 54 N. Walcott              | Wood River Water<br>Treatment Plant  | IEPA     |    |     |     | х   | х          |                              | х                 |    |
| 17-119-9991 | Madison     | Highland          | 5403 State Rd. 160         | CASTNET Station                      | USEPA    |    |     |     |     | х          |                              |                   |    |
| 17-143-0024 | Peoria      | Peoria            | Hurlburt & MacArthur       | Fire Station #8                      | IEPA     |    |     |     |     | х          |                              |                   |    |
| 17-143-0037 | Peoria      | Peoria            | 613 N.E. Jefferson         | City Office Bldg.                    | IEPA     |    |     |     |     |            |                              | х                 |    |
| 17-143-1001 | Peoria      | Peoria<br>Heights | 508 E. Glen Ave.           | Peoria Heights High<br>School        | IEPA     |    |     |     |     | х          |                              |                   |    |
| 17-157-0001 | Randolph    | Houston           | Hickory Grove & Fallview   | Houston Trailer                      | IEPA     |    |     |     |     | х          |                              | х                 |    |
| 17-161-3002 | Rock Island | Rock Island       | 32 Rodman Ave.             | Rock Island Arsenal                  | IEPA     |    |     |     |     | х          |                              | х                 |    |

| AQS ID      | County    | City           | Address                       | Site Description                | Owner    | со | NO2 | NOy | SO <sub>2</sub> | 03 | PM <sub>10</sub> /<br>Coarse | PM <sub>2.5</sub> | Pb |
|-------------|-----------|----------------|-------------------------------|---------------------------------|----------|----|-----|-----|-----------------|----|------------------------------|-------------------|----|
| 17-163-0010 | St. Clair | East St. Louis | 13th & Tudor                  | ESTL Trailer                    | IEPA     |    | х   |     | х               | х  |                              | х                 |    |
| 17-167-0012 | Sangamon  | Springfield    | State Fair Grounds            | Agriculture Bldg.               | IEPA     |    |     |     |                 |    |                              | х                 |    |
| 17-167-0014 | Sangamon  | Springfield    | Illinois Building             | State Fairgrounds Shelter       | IEPA     |    |     |     |                 | х  |                              |                   |    |
| 17-179-0004 | Tazewell  | Pekin          | 272 Derby                     | Pekin Fire Station #3           | IEPA     |    |     |     | х               |    |                              |                   |    |
| 17-197-1002 | Will      | Joliet         | Midland & Campbell Sts.       | Pershing Elementary<br>School   | IEPA     |    |     |     |                 |    |                              | Х                 |    |
| 17-197-1011 | Will      | Braidwood      | 36400 S. Essex Rd.            | Com Ed Training Ctr.<br>Trailer | IEPA     |    |     |     |                 | х  |                              | х                 |    |
| 17-201-0118 | Winnebago | Rockford       | 204 South 1 <sup>st</sup> St. | Fire Department Admin.<br>Bldg. | IEPA     |    |     |     |                 |    |                              | Х                 |    |
| 17-201-2001 | Winnebago | Loves Park     | 1405 Maple Ave.               | Maple Elementary School         | IEPA     |    |     |     |                 | х  |                              |                   |    |
|             |           |                |                               |                                 | IEPA     | 2  | 6   | 1   | 7               | 27 | 3                            | 27                | 2  |
|             |           |                |                               |                                 | CCDES    | 0  | 2   | 0   | 2               | 6  | 1                            | 7                 | 2  |
|             |           |                |                               |                                 | NPS/SWS  | 1  | 0   | 1   | 1               | 0  | 1                            | 0                 | 0  |
|             |           |                |                               |                                 | ERM Inc. | 0  | 0   | 0   | 2               | 0  | 0                            | 0                 | 0  |
|             |           |                |                               |                                 | USEPA    | 0  | 0   | 0   | 0               | 3  | 0                            | 0                 | 0  |
|             |           |                |                               |                                 | Total    | 3  | 8   | 2   | 12              | 36 | 5                            | 34                | 4  |

Red indicates monitor/site proposed for removal or has been removed, Green indicates monitor/site proposed for installation or has been installed.

## Table 2: Ozone Sites

| AQS ID      | Site                            | Latitude<br>Longitude        | Area Represented                              | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Station Type | Monitor<br>Type | Sampling<br>Schedule |
|-------------|---------------------------------|------------------------------|-----------------------------------------------|----------------------|------------------------|---------------|--------------|-----------------|----------------------|
| 17-001-0007 | Quincy                          | +39.91540937<br>-91.33586832 | Quincy, IL-MO                                 | Population           | Highest Conc.          | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-019-0007 | Thomasboro                      | +40.244913<br>-88.188519     | Champaign-Urbana, IL                          | Population           | N/A                    | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-019-1001 | Bondville                       | +40.052780<br>-88.372510     | Champaign-Urbana, IL                          | Highest Conc.        | N/A                    | Regional      | NCORE        | 49i             | Hourly/Y             |
| 17-031-0001 | Alsip                           | +41.6709919<br>-87.7324569   | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-031-0032 | South Water Filtration<br>Plant | +41.75583241<br>-87.54534967 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Highest Conc.        | Population             | Neighborhood  | SLAMS        | T400            | Hourly/S             |
| 17-031-0076 | Com Ed.                         | +41.75139998<br>-87.71348815 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | SLAMS        | Ecotech<br>187  | Hourly/S             |
| 17-031-1003 | Taft High School                | +41.98433233<br>-87.7920017  | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-031-1601 | Lemont                          | +41.66812034<br>-87.99056969 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | SLAMS        | Ecotech<br>187  | Hourly/S             |
| 17-031-3103 | Schiller Park                   | +41.96519348<br>-87.87626473 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | Source                 | Neighborhood  | PAMS/SLAMS   | 49i             | Hourly/S             |
| 17-031-4002 | Cicero                          | +41.85524313<br>-87.7524697  | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Neighborhood  | SLAMS        | Ecotech<br>187  | Hourly/S             |
| 17-031-4007 | Des Plaines                     | +42.06028469<br>-87.86322543 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-031-4201 | Northbrook                      | +42.13999619<br>-87.79922692 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | NA                     | Urban         | PAMS/NCORE   | 49i             | Hourly/Y             |
| 17-031-7002 | Evanston                        | +42.062053<br>-87.675254     | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Neighborhood  | SLAMS        | T400            | Hourly/S             |
| 17-043-6001 | Lisle                           | +41.81304939<br>-88.0728269  | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-049-1001 | Effingham                       | +39.06715932<br>-88.54893401 | Effingham, IL                                 | Population           | N/A                    | Regional      | SLAMS        | T400            | Hourly/S             |
| 17-065-0002 | Knight Prairie                  | +38.08215516<br>-88.6249434  | Mt Vernon, IL                                 | Background           | N/A                    | Regional      | SLAMS        | T400            | Hourly/S             |
| 17-083-0117 | Jerseyville                     | +39.101439<br>-90.344494     | St Louis, IL-MO                               | Transport            | Population             | Regional      | SLAMS        | T400            | Hourly/S             |
| 17-085-9991 | Stockton                        | +42.2869<br>-89.9997         | Stockton, IL                                  | Highest Conc.        | N/A                    | Regional      | SLAMS        | 49i             | Hourly/S             |
| 17-089-0005 | Elgin                           | +42.04914776<br>-88.27302929 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-097-1007 | Zion                            | +42.4675733<br>-87.81004705  | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Highest Conc.        | Transport              | Urban         | PAMS/SLAMS   | T400            | Hourly/S             |
| 17-111-0001 | Cary                            | +42.22144166<br>-88.24220734 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | SLAMS        | T400            | Hourly/S             |

| AQS ID      | Site           | Latitude<br>Longitude        | Area Represented                              | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Station Type | Monitor<br>Type | Sampling<br>Schedule |
|-------------|----------------|------------------------------|-----------------------------------------------|----------------------|------------------------|---------------|--------------|-----------------|----------------------|
| 17-113-2003 | Normal         | +40.51873537<br>-88.99689571 | Bloomington-Normal, IL                        | Population           | Highest Conc.          | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-115-0013 | Decatur        | +39.866933<br>-88.925452     | Decatur, IL                                   | Population           | Highest Conc.          | Urban         | SLAMS        | 49i             | Hourly/S             |
| 17-117-0002 | Nilwood        | +39.39607533<br>-89.80973892 | St Louis, IL-MO                               | Transport            | Population             | Regional      | SLAMS        | 49i             | Hourly/S             |
| 17-119-1009 | Maryville      | +38.72657262<br>-89.95996251 | St Louis, IL-MO                               | Population           | N/A                    | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-119-0120 | Alton          | +38.901316<br>-90.146211     | St Louis, IL-MO                               | Highest Conc.        | Population             | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-119-3007 | Wood River     | +38.86066947<br>-90.10585111 | St Louis, IL-MO                               | Population           | N/A                    | Urban         | SLAMS        | 49i             | Hourly/S             |
| 17-119-9991 | Highland       | +38.8690<br>-89.6228         | St Louis, IL-MO                               | Highest Conc.        | N/A                    | Regional      | SLAMS        | 49i             | Hourly/S             |
| 17-143-0024 | Peoria         | +40.68742038<br>-89.60694277 | Peoria, IL                                    | Population           | N/A                    | Neighborhood  | SLAMS        | T400            | Hourly/S             |
| 17-143-1001 | Peoria Heights | +40.74550393<br>-89.58586902 | Peoria, IL                                    | Highest Conc.        | Population             | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-157-0001 | Houston        | +38.17627761<br>-89.78845862 | N/A                                           | Background           | N/A                    | Regional      | SLAMS        | T400            | Hourly/S             |
| 17-161-3002 | Rock Island    | +41.51472697<br>-90.51735026 | Davenport-Moline-Rock<br>Island, IA-IL        | Population           | Highest Conc.          | Neighborhood  | SLAMS        | T400            | Hourly/S             |
| 17-163-0010 | East St. Louis | +38.61203448<br>-90.16047663 | St Louis, IL-MO                               | Population           | N/A                    | Neighborhood  | SLAMS        | 49i             | Hourly/S             |
| 17-167-0014 | Springfield    | +39.831522<br>-89.640926     | Springfield, IL                               | Population           | Highest Conc.          | Urban         | SLAMS        | T400            | Hourly/S             |
| 17-197-1011 | Braidwood      | +41.22153707<br>-88.19096718 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Background           | N/A                    | Regional      | PAMS/SLAMS   | T400            | Hourly/S             |
| 17-201-2001 | Loves Park     | +42.33498222<br>-89.0377748  | Rockford, IL                                  | Highest Conc.        | Population             | Urban         | SLAMS        | T400            | Hourly/S             |

T400 – Teledyne (method 087); 49i – ThermoScientific (method 047), Ecotech 187 – Ecotech Serinus 10 (method 187)

S = Seasonal – March through October ozone monitoring season

Y = Year-round monitoring

Red indicates monitor proposed for removal

Green indicates monitor proposed for installation

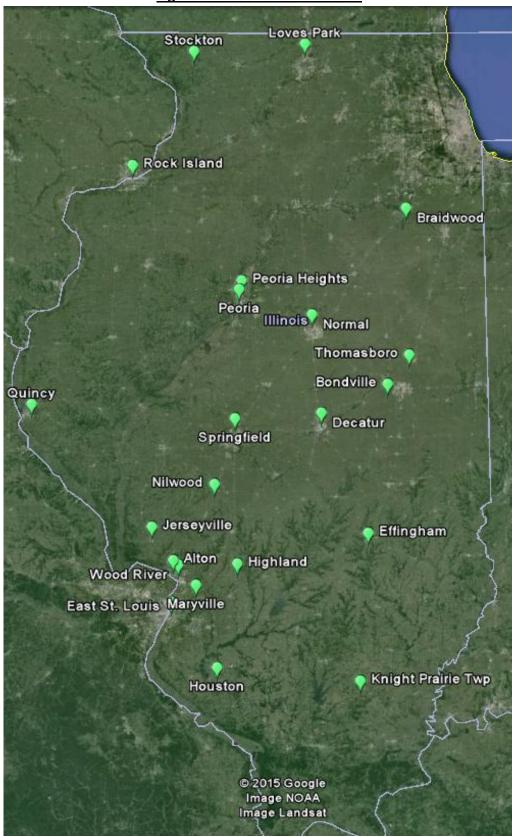



Figure 2a: Ozone Sites – Illinois

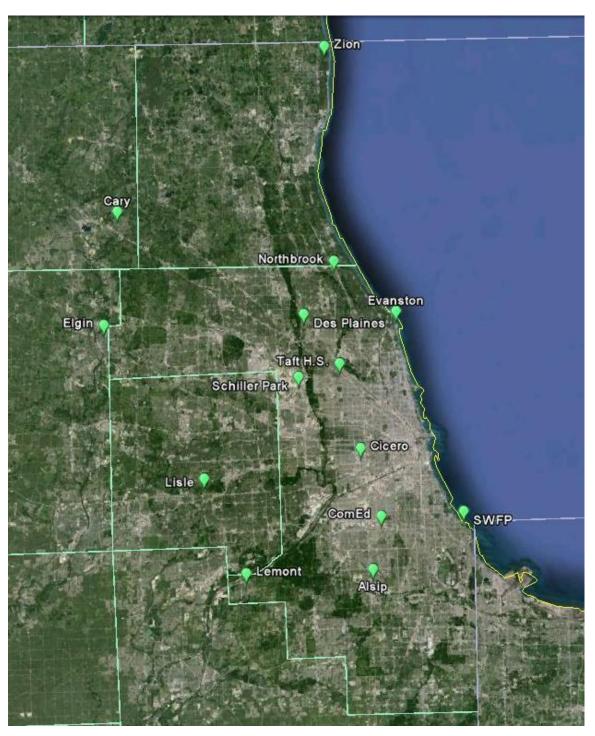



Figure 2b: Ozone Sites – Illinois Chicago Area

## Table 3: PM<sub>2.5</sub> Sites

| AQS ID      | Site                      | Latitude<br>Longitude        | Area<br>Represented                                   | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Standard  | Station<br>Type | Monitor Type (Primary) | Sampling Schedule  | Collocated          | Chemical Speciation | Frequency |
|-------------|---------------------------|------------------------------|-------------------------------------------------------|----------------------|------------------------|---------------|-----------|-----------------|------------------------|--------------------|---------------------|---------------------|-----------|
| 17-019-0006 | Champaign                 | +40.123883<br>-88.240550     | Champaign-<br>Urbana, IL                              | Population           | N/A                    | Neighborhood  | Annual/24 | SLAMS           | FEM<br>Teledyne        | 1/3                |                     |                     |           |
| 17-019-1001 | Bondville                 | +40.052780<br>-88.372510     | Champaign-<br>Urbana, IL                              | Transport            | Population             | Regional      | Annual/24 | RURAL<br>NCORE  | BGI                    | 1/3,<br>Hou<br>rly | FEM<br>Thermo       | ХЕХ                 | 1/3       |
| 17-031-0001 | Alsip                     | +41.6709919<br>-87.7324569   | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Neighborhood  | Annual/24 | SLAMS,<br>SPM   | Met One,<br>BAM        | 1/6,<br>Hou<br>rly |                     |                     |           |
| 17-031-0022 | Washington<br>High School | +41.68716544<br>-87.53931548 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | Source                 | Neighborhood  | Annual/24 | SLAMS           | AS                     | 1/3                | AS<br>(1/12<br>day) |                     |           |
| 17-031-0052 | Mayfair Pump<br>Station   | +41.96548483<br>-87.74992806 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Highest<br>Conc.     | Population             | Neighborhood  | Annual/24 | SLAMS           | Met One                | 1/3                |                     |                     |           |

| AQS ID      | Site                        | Latitude<br>Longitude        | Area<br>Represented                                   | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Standard  | Station<br>Type | Monitor Type (Primary) | Sampling Schedule  | Collocated               | Chemical Speciation | Frequency |
|-------------|-----------------------------|------------------------------|-------------------------------------------------------|----------------------|------------------------|---------------|-----------|-----------------|------------------------|--------------------|--------------------------|---------------------|-----------|
| 17-031-0057 | Springfield<br>Pump Station | +41.912739<br>-87.722673     | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Neighborhood  | Annual/24 | SLAMS,<br>SPM   | Met One,<br>BAM        | 1/6,<br>Hou<br>rly |                          | YES                 | 1/6       |
| 17-031-0076 | Com Ed                      | +41.75139998<br>-87.71348815 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Neighborhood  | Annual/24 | SLAMS,<br>SPM   | Met One,<br>BAM        | 1/6,<br>Hou<br>rly |                          | YES                 | 1/3       |
| 17-031-1016 | Lyons<br>Township           | +41.801180<br>-87.832349     | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Source               | Population             | Middle        | 24        | SLAMS           | THRM                   | 1/3                | THRM<br>(1/12<br>day)    |                     |           |
| 17-031-3103 | Schiller Park               | +41.96519348<br>-87.87626473 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Highest<br>Conc.     | Population             | Middle        | Annual/24 | SLAMS           | BGI                    | 1/3                |                          |                     |           |
| 17-031-3301 | Summit                      | +41.78276601<br>-87.80537679 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Neighborhood  | Annual/24 | SLAMS           | Met One                | 1/3                | Met One<br>(1/12<br>day) |                     |           |
| 17-031-4007 | Des Plaines                 | +42.06028469<br>-87.86322543 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | Annual/24 | SLAMS           | FEM<br>Teledyne        | Hou<br>rly         |                          |                     |           |

| AQS ID      | Site                                | Latitude<br>Longitude        | Area<br>Represented                                   | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Standard  | Station<br>Type | Monitor Type (Primary) | Sampling Schedule | Collocated            | Chemical Speciation | Frequency |
|-------------|-------------------------------------|------------------------------|-------------------------------------------------------|----------------------|------------------------|---------------|-----------|-----------------|------------------------|-------------------|-----------------------|---------------------|-----------|
| 17-031-4201 | Northbrook                          | +42.13999619<br>-87.79922692 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | Annual/24 | URBAN<br>NCORE  | FEM<br>Teledyne        | 1/3,<br>H         | THRM<br>(1/12<br>day) | YES                 | 1/3       |
| 17-031-6005 | Cicero                              | +41.86442642<br>-87.74890238 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Neighborhood  | Annual/24 | SLAMS,<br>SPM   | AS, BAM                | 1/6,<br>Н         |                       |                     |           |
| 17-031-0119 | Lansing<br>Kingery near-<br>road #1 | +41.578603<br>-87.557392     | Kingery high<br>traffic near-<br>road<br>segment      | Highest<br>Conc.     | N/A                    | Micro         | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 |                       |                     |           |
| 17-043-4002 | Naperville                          | +41.77107094<br>-88.15253365 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | Annual/24 | SLAMS           | FEM<br>Teledyne        | н                 |                       |                     |           |
| 17-065-0002 | Knight Prairie                      | +38.08215516<br>-88.6249434  | Mt Vernon, IL                                         | Background           | Population             | Regional      | Annual/24 | SLAMS           | FEM<br>Teledyne        | н                 |                       |                     |           |
| 17-083-0117 | Jerseyville                         | +39.101439<br>-90.344494     | St Louis, IL-<br>MO                                   | Population           | Transport              | Urban         | Annual/24 | SLAMS           | FEM<br>Teledyne        | н                 |                       |                     |           |
| 17-089-0003 | Elgin                               | +42.050403<br>-88.28001471   | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | Annual/24 | SLAMS           | BGI                    | 1/3               |                       |                     |           |
| 17-089-0007 | Aurora                              | +41.78471651<br>-88.32937361 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | Annual/24 | SLAMS           | BGI                    | 1/6               |                       |                     |           |
| 17-111-0001 | Cary                                | +42.22144166<br>-88.24220734 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | Annual/24 | SLAMS           | FEM<br>Teledyne        | н                 |                       |                     |           |

| AQS ID      | Site                    | Latitude<br>Longitude        | Area<br>Represented                        | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Standard  | Station<br>Type | Monitor Type (Primary) | Sampling Schedule | Collocated           | Chemical Speciation | Frequency |
|-------------|-------------------------|------------------------------|--------------------------------------------|----------------------|------------------------|---------------|-----------|-----------------|------------------------|-------------------|----------------------|---------------------|-----------|
| 17-113-2003 | Normal                  | +40.51873537<br>-88.99689571 | Bloomington-<br>Normal, IL                 | Population           | N/A                    | Urban         | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 | FEM<br>Teledyne      |                     |           |
| 17-115-0013 | Decatur                 | +39.86683389<br>-88.92559445 | Decatur, IL                                | Population           | Source                 | Neighborhood  | Annual/24 | SLAMS           | FEM<br>Teledyne        | н                 |                      |                     |           |
| 17-119-0024 | Granite City<br>Gateway | +38.7006315<br>-90.14476267  | St Louis, IL-<br>MO                        | Source               | Population             | Middle        | 24        | SLAMS,<br>SPM   | BGI                    | 1/3               |                      | YES                 | 1/6       |
| 17-119-1007 | Granite City            | +38.70453426<br>-90.13967484 | St Louis, IL-<br>MO                        | Highest<br>Conc.     | Population             | Neighborhood  | Annual/24 | SLAMS,<br>SPM   | BGI, BAM               | 1/6,<br>H         | BGI<br>(1/12<br>day) |                     |           |
| 17-119-0120 | Alton                   | +38.901316<br>-90.146211     | St Louis, IL-<br>MO                        | Population           | N/A                    | Neighborhood  | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 |                      |                     |           |
| 17-119-3007 | Wood River              | +38.86066947<br>-90.10585111 | St Louis, IL-<br>MO                        | Population           | N/A                    | Neighborhood  | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 |                      |                     |           |
| 17-143-0037 | Peoria                  | +40.697007<br>-89.58473722   | Peoria, IL                                 | Population           | N/A                    | Urban         | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 |                      |                     |           |
| 17-157-0001 | Houston                 | +38.17627761<br>-89.78845862 | N/A                                        | Background           | Population             | Regional      | Annual/24 | SLAMS           | FEM<br>Teledyne        | н                 |                      |                     |           |
| 17-161-3002 | Rock Island             | +41.51472697<br>-90.51735026 | Davenport-<br>Moline-Rock<br>Island, IA-IL | Population           | N/A                    | Urban         | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 |                      |                     |           |

| AQS ID      | Site           | Latitude<br>Longitude        | Area<br>Represented                                   | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Standard  | Station<br>Type | Monitor Type (Primary) | Sampling Schedule | Collocated | Chemical Speciation | Frequency |
|-------------|----------------|------------------------------|-------------------------------------------------------|----------------------|------------------------|---------------|-----------|-----------------|------------------------|-------------------|------------|---------------------|-----------|
| 17-163-0010 | East St. Louis | +38.61203448<br>-90.16047663 | St Louis, IL-<br>MO                                   | Population           | Source                 | Neighborhood  | Annual/24 | SLAMS           | FEM<br>Teledyne        | н                 |            |                     |           |
| 17-167-0012 | Springfield    | +39.83192087<br>-89.64416359 | Springfield, IL                                       | Population           | N/A                    | Urban         | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 |            |                     |           |
| 17-197-1002 | Joliet         | +41.52688509<br>-88.11647381 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Population           | N/A                    | Neighborhood  | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 |            |                     |           |
| 17-197-1011 | Braidwood      | +41.22153707<br>-88.19096718 | Chicago-<br>Naperville-<br>Michigan<br>City, IL-IN-WI | Background           | Population             | Regional      | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 |            |                     |           |
| 17-201-0118 | Rockford       | +42.2670002<br>-89.089170    | Rockford, IL                                          | Population           | N/A                    | Middle        | Annual/24 | SLAMS           | FEM<br>Teledyne        | Н                 |            |                     |           |

AS – Anderson Sequential (method 155); A1 – Anderson Single Event (method 153); Met One - MetOne sequential (method 545); BGI – BGI Instruments (method 142); THRM – ThermoScientific (method 143); FEM Thermo – Federal Equivalent Method Thermo Continuous (method 183); FEM Teledyne – Federal Equivalent Method Teledyne T640 Continuous (method 236); BAM - Beta Attenuation Monitor, Air Quality Index only (method 731), H = Hourly.

Sites that are part of the Chemical Speciation Network are listed in the Chemical Speciation column.

Red indicates monitor proposed for removal

Green indicates monitor proposed for installation

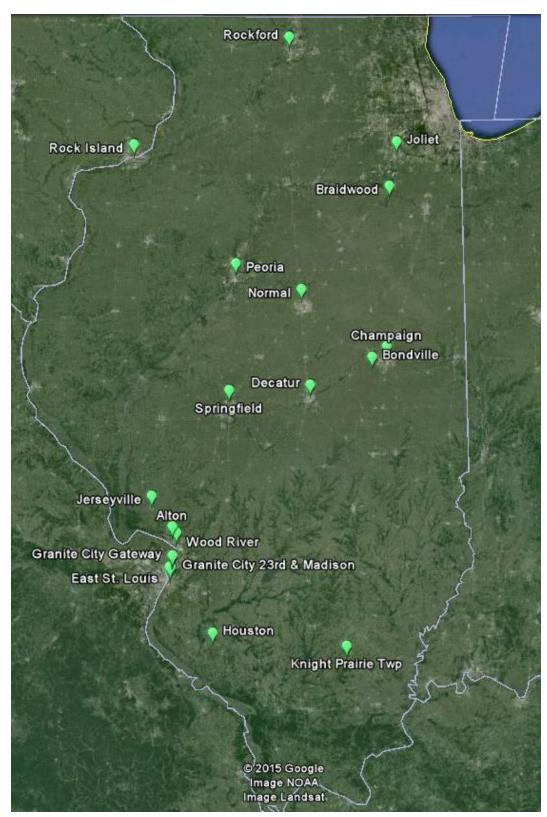
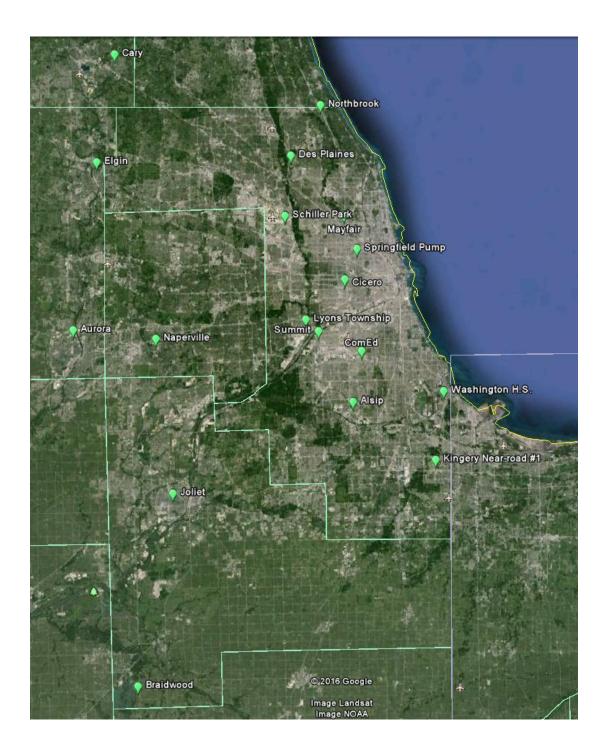
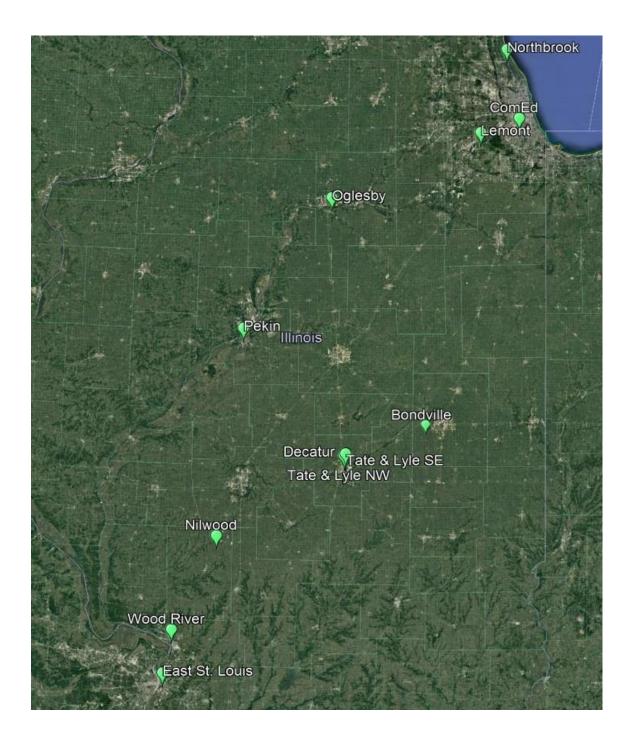




Figure 3a: PM<sub>2.5</sub> Sites – Illinois

### Figure 3b: PM<sub>2.5</sub> Sites – Illinois Chicago Area



| AQS ID      | Site           | Latitude<br>Longitude        | Area Represented                               | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Station<br>Type | Monitor<br>Type | Sampling<br>Schedule |
|-------------|----------------|------------------------------|------------------------------------------------|----------------------|------------------------|---------------|-----------------|-----------------|----------------------|
| 17-019-1001 | Bondville      | +40.052780<br>-88.372510     | Champaign-Urbana, IL                           | Highest Conc.        | N/A                    | Regional      | NCORE           | T100U           | Hourly               |
| 17-031-0076 | Com Ed         | +41.75139998<br>-87.71348815 | Chicago-Naperville-<br>Michigan City, IL-IN-WI | Population           | N/A                    | Urban         | SLAMS           | T100            | Hourly               |
| 17-031-1601 | Lemont         | +41.66812034<br>-87.99056969 | Chicago-Naperville-<br>Michigan City, IL-IN-WI | Population           | N/A                    | Neighborhood  | SLAMS           | T100            | Hourly               |
| 17-031-4201 | Northbrook     | +42.13999619<br>-87.79922692 | Chicago-Naperville-<br>Michigan City, IL-IN-WI | Population           | N/A                    | Urban         | NCORE           | T100U           | Hourly               |
| 17-099-0007 | Oglesby        | +41.29301454<br>-89.04942498 | Ottawa-Streator, IL                            | Highest Conc.        | Source                 | Neighborhood  | SLAMS           | T100            | Hourly               |
| 17-115-0013 | Decatur        | +39.86683389<br>-88.92559445 | Decatur, IL                                    | Population           | N/A                    | Neighborhood  | SLAMS           | T100            | Hourly               |
| 17-115-0217 | Tate & Lyle NW | +39.850712<br>-88.933635     | Tate & Lyle                                    | Source               | N/A                    | Neighborhood  | SLAMS           | 43i             | Hourly               |
| 17-115-0317 | Tate & Lyle SE | +39.846856<br>-88.923323     | Tate & Lyle                                    | Source               | N/A                    | Neighborhood  | SLAMS           | 43i             | Hourly               |
| 17-117-0002 | Nilwood        | +39.39607533<br>-89.80973892 | St Louis, IL-MO                                | Background           | Population             | Regional      | SLAMS           | T100            | Hourly               |
| 17-119-3007 | Wood River     | +38.86066947<br>-90.10585111 | St Louis, IL-MO                                | Population           | N/A                    | Neighborhood  | SLAMS           | T100            | Hourly               |
| 17-163-0010 | East St. Louis | +38.61203448<br>-90.16047663 | St Louis, IL-MO                                | Population           | N/A                    | Neighborhood  | SLAMS           | T100            | Hourly               |
| 17-179-0004 | Pekin          | +40.55646017<br>-89.65402807 | Peoria, IL                                     | Highest Conc.        | Source                 | Neighborhood  | SLAMS           | T100            | Hourly               |


#### Table 4: SO<sub>2</sub> Sites

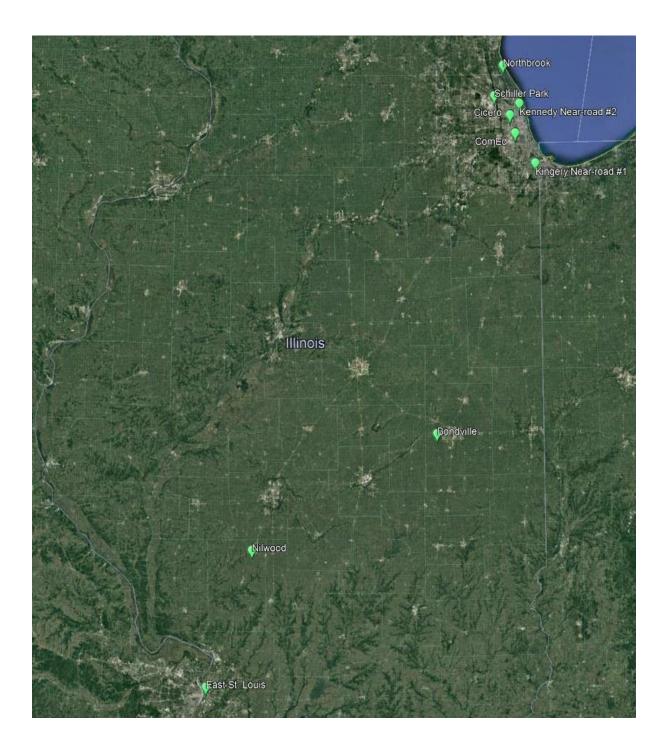
T100 – Teledyne (method 100); T100U – Teledyne Trace Level (method 600); 43i – Thermo Scientific Model 43i (method 060)

Red indicates monitor proposed for removal

Green indicates monitor proposed for installation

Figure 4: SO<sub>2</sub> Sites – Illinois




#### Table 5: NO2 Sites

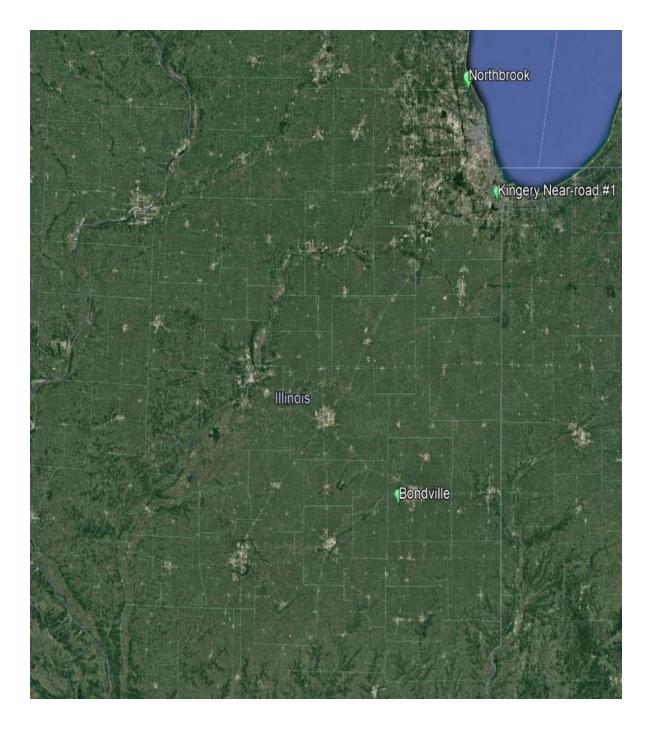
| AQS ID      | Site Description                | Latitude<br>Longitude        | Area Represented                              | Monitoring<br>Type        | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Station<br>Type | Monitor<br>Type | Sampling<br>Schedule |
|-------------|---------------------------------|------------------------------|-----------------------------------------------|---------------------------|----------------------|------------------------|---------------|-----------------|-----------------|----------------------|
| 17-031-0076 | Com Ed                          | +41.75139998<br>-87.71348815 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Area-wide                 | Population           | N/A                    | Neighborhood  | SLAMS           | TE              | Hourly               |
| 17-031-3103 | Schiller Park                   | +41.96519348<br>-87.87626473 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Susceptible<br>Population | Highest<br>Conc.     | Source                 | Middle        | PAMS/SLAMS      | T500U           | Hourly               |
| 17-031-4002 | Cicero                          | +41.85524313<br>-87.7524697  | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Area-wide                 | Population           | Highest<br>Conc.       | Neighborhood  | SLAMS           | T200            | Hourly               |
| 17-031-4201 | Northbrook                      | +42.13999619<br>-87.79922692 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Area-wide                 | Population           | N/A                    | Urban         | PAMS/NCORE      | T500U           | Hourly               |
| 17-031-0119 | Lansing Kingery<br>near-road #1 | +41.578603<br>-87.557392     | Kingery high traffic road<br>segment          | Near-road                 | Highest<br>Conc.     | Source                 | Micro         | SLAMS           | T500U           | Hourly               |
| 17-031-0219 | Chicago Kennedy<br>near-road #2 | +41.920681<br>-87.674425     | Kennedy high traffic road<br>segment          | Near-road                 | Highest<br>Conc.     | Source                 | Micro         | SLAMS           | T500U           | Hourly               |
| 17-117-0002 | Nilwood                         | +39.39607533<br>-89.80973892 | St Louis, IL-MO                               | Area-wide                 | Background           | Population             | Regional      | SPM             | T500U           | Hourly               |
| 17-163-0010 | East St. Louis                  | +38.61203448<br>-90.16047663 | St Louis, IL-MO                               | Area-wide                 | Population           | N/A                    | Neighborhood  | SLAMS           | T500U           | Hourly               |

T200 – Teledyne (method 099); TE – ThermoScientific (method 074); T500U – Teledyne (method 212)

Red indicates monitor proposed for removal Green indicates monitor proposed for installation

### Figure 5: NO<sub>2</sub> Sites – Illinois




#### Table 6: CO Sites

| AQS ID      | Site Description                | Latitude<br>Longitude        | Area Represented                               | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Station Type | Monitor<br>Type | Sampling<br>Schedule |
|-------------|---------------------------------|------------------------------|------------------------------------------------|----------------------|------------------------|---------------|--------------|-----------------|----------------------|
| 17-019-1001 | Bondville                       | +40.052780<br>-88.372510     | Champaign-Urbana, IL                           | Highest Conc.        | N/A                    | Regional      | NCORE        | API 300EU       | Hourly               |
| 17-031-4201 | Northbrook                      | +42.13999619<br>-87.79922692 | Chicago-Naperville-<br>Michigan City, IL-IN-WI | Population           | N/A                    | Neighborhood  | PAMS/NCORE   | 48iTLE          | Hourly               |
| 17-031-0119 | Lansing Kingery<br>near-road #1 | +41.578603<br>-87.557392     | Kingery high traffic road segment              | Highest Conc.        | Source                 | Micro         | SLAMS        | API 300         | Hourly               |

48i – ThermoScientific (method 054); 48iTLE – ThermoScientific Trace Level (method 554); API 300EU – Teledyne Trace Level (method 593) API 300 – Teledyne/API non-trace level (method 093)

Red indicates monitor proposed for removal Green indicates monitor proposed for installation

### Figure 6: CO Sites – Illinois

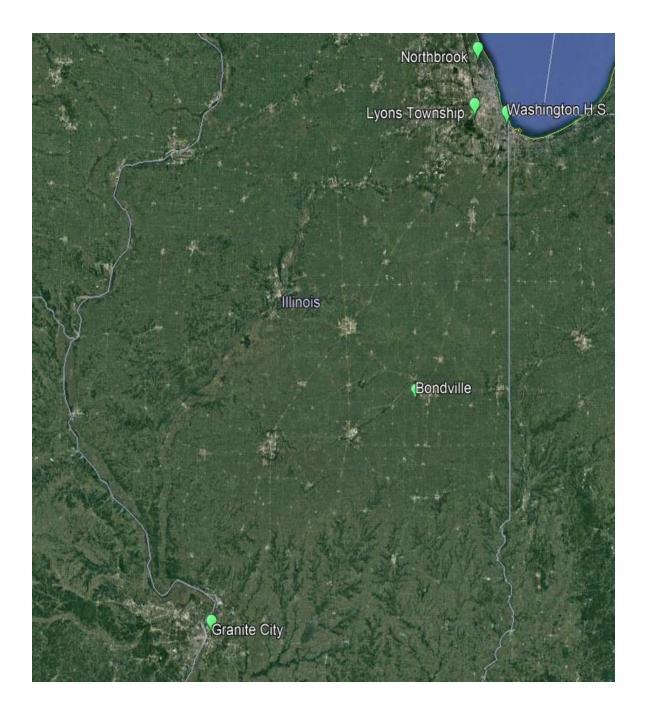


#### Table 7: PM10 and PM10-2.5 Sites

| AQS ID      | Site<br>Description                 | Latitude<br>Longitude        | Area Represented                              | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Station<br>Type | Monitor Type<br>(Primary) | Sampling<br>Schedule | Collocated        |
|-------------|-------------------------------------|------------------------------|-----------------------------------------------|----------------------|------------------------|---------------|-----------------|---------------------------|----------------------|-------------------|
| 17-031-0022 | Washington<br>High School<br>(PM10) | +41.68716544<br>-87.53931548 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Highest Conc.        | Source                 | Neighborhood  | SLAMS           | BAM 1020                  | Hourly               |                   |
| 17-031-1016 | Lyons Township<br>(PM10)            | +41.801180<br>-87.832349     | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Highest Conc.        | Source                 | Middle        | SLAMS           | BAM 1020                  | Hourly               |                   |
| 17-031-4201 | Northbrook<br>(PM10)                | +42.13999619<br>-87.79922692 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | NCORE           | SA/GMW                    | 1/6                  | YES<br>(1/12 day) |
| 17-031-4201 | Northbrook<br>(PM coarse)           | +42.13999619<br>-87.79922692 | Chicago-Naperville-Michigan<br>City, IL-IN-WI | Population           | N/A                    | Urban         | NCORE           | Thermo Pair               | 1/3                  |                   |
| 17-119-1007 | Granite City<br>(PM10)              | +38.70453426<br>-90.13967484 | St Louis, IL-MO                               | Highest Conc.        | Source                 | Neighborhood  | SLAMS           | SA/GMW                    | 1/6                  |                   |

BAM 1020 - Met One 1020 Beta Attenuation Monitor (method 122);

SA/GMW - Sierra Anderson/General Metal Works Hi-Volume Sampler, Standard Conditions (method 063);


Thermo Pair - Thermo Scientific Partisol Model 2000 Sampler Pair for PM coarse (method 175).

The National Park Service operates an additional  $PM_{10}$  monitor in Bondville as part of the IMPROVE network.

Red indicates monitor proposed for removal

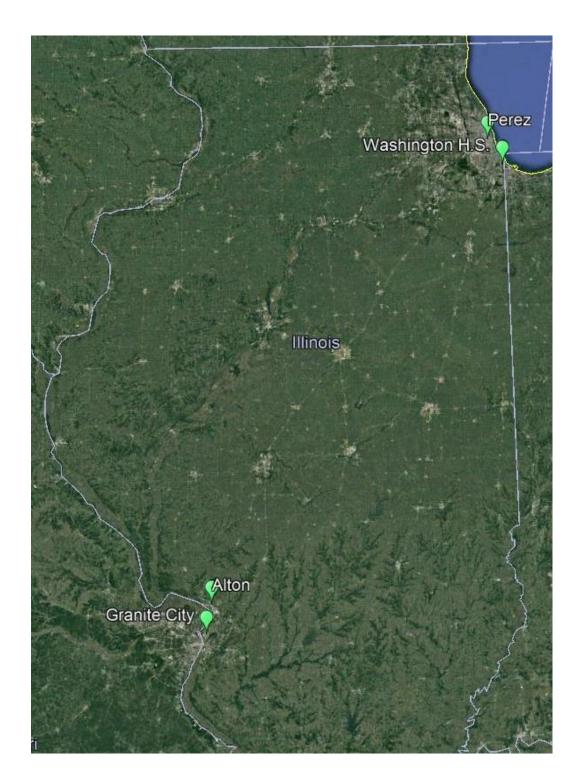
Green indicates monitor proposed for installation

Figure 7: PM<sub>10</sub> Sites – Illinois



### Table 8: Lead Sites

| AQS ID      | Site<br>Description       | Latitude<br>Longitude        | Area<br>Represented                                   | Primary<br>Objective | Secondary<br>Objective | Spatial Scale | Station<br>Type | Monitor Type (Primary) | Frequency | Collocated        |
|-------------|---------------------------|------------------------------|-------------------------------------------------------|----------------------|------------------------|---------------|-----------------|------------------------|-----------|-------------------|
| 17-031-0022 | Washington<br>High School | +41.68716544<br>-87.53931548 | Chicago-<br>Naperville-<br>Michigan City,<br>IL-IN-WI | Highest Conc.        | N/A                    | Neighborhood  | SLAMS           | SA/GMW                 | 1/6       |                   |
| 17-031-0110 | Perez                     | +41.855917<br>-87.658419     | H. Kramer                                             | Source               | N/A                    | Middle        | SLAMS           | SA/GMW                 | 1/6       | YES<br>(1/12 day) |
| 17-119-0010 | Granite City              | +38.69443831<br>-90.15395426 | Mayco / US<br>Steel                                   | Highest Conc.        | Source                 | Middle        | SLAMS           | Hi-Vol                 | 1/6       | YES<br>(1/12 day) |
| 17-119-0121 | Alton                     | +38.888373<br>-90.107592     | Olin<br>Corporation                                   | Highest Conc.        | Source                 | Middle        | SPM             | To Be Determined       | 1/6       |                   |


Hi-Vol - Environmental Products Hi-Volume Sampler, Local Conditions (laboratory method 813);

SA/GMW – Sierra Anderson/General Metal Works Hi-Volume Sampler, Local Conditions (laboratory method 043)

Red indicates monitor proposed for removal

Green indicates monitor proposed for installation

### Figure 8: Lead Sites – Illinois



## Appendix A

### Data Requirements Rule SO<sub>2</sub> Emissions Assessment for Illinois Areas Modeled to be in Attainment with the 2010 1-hour SO<sub>2</sub> NAAQS

### **Background**

Pursuant to Section 51.1205(b) of the Data Requirements Rule (DRR) (40 CFR 51 Subpart BB), Illinois EPA is required to submit an annual report to the Regional Administrator that documents the annual SO<sub>2</sub> emissions of each applicable source in each area previously modeled to be attaining the 2010 1-hour SO<sub>2</sub> NAAQS. This report is to be submitted to the Regional Administrator by July 1 of each year and must provide an assessment of the cause of any emissions increases from the previous year and a recommendation regarding the need for additional modeling to determine if the areas are still meeting the 1-hour SO<sub>2</sub> NAAQS.

Multiple areas in Illinois have been designated by USEPA as attaining the 1-hour SO<sub>2</sub> NAAQS, based upon a technical analysis by USEPA that considered, in part, modeling results submitted by Illinois EPA pursuant to the DRR or the 2015 SO<sub>2</sub> Consent Decree. Six of the attainment areas have both active applicable DRR sources and model design values greater than 50% of the 1-hour SO<sub>2</sub> NAAQS (see Table A-1). These six areas are still subject to the ongoing data requirements listed under Section 51.1205(b).

| Attainment/Unclassifiable<br>Area | Applicable<br>Source(s)                                               | Modeled<br>Period | Model Design<br>Value    | Percent of 1-hour<br>SO <sub>2</sub> NAAQS* |  |
|-----------------------------------|-----------------------------------------------------------------------|-------------------|--------------------------|---------------------------------------------|--|
| Jasper County                     | Newton Power<br>Station                                               | 2012-2014         | 138.89 ug/m <sup>3</sup> | 70.75%                                      |  |
| Massac County                     | Joppa Power Station                                                   | 2012-2014         | 168.29 ug/m <sup>3</sup> | 85.72%                                      |  |
| Crawford County                   | Rain CII Carbon                                                       | 2015-2017         | 118.2 ug/m <sup>3</sup>  | 60.21%                                      |  |
| Lake County                       | Midwest Generation<br>LLC -Waukegan                                   | 2013-2015         | 98.91 ug/m <sup>3</sup>  | 50.38%                                      |  |
| Granite City Area                 | U.S. Steel-Granite<br>City Works;<br>Gateway Energy &<br>Coke Company | 2016-2018         | 578.83                   | 294.84%                                     |  |
| Williamson County                 | Southern Illinois<br>Power Coop                                       | 2013-2015         | 194.92 ug/m <sup>3</sup> | 99.29%                                      |  |

# Table A-1: SO2 Attainment/Unclassifiable Areas in Illinois Subject to Ongoing Data Requirements Pursuant to Section 51.1205(b)

\*Based on 1-hour SO<sub>2</sub> NAAQS value of 196.32 ug/m<sup>3</sup>

### 2014-2020 SO<sub>2</sub> Emission Trends Data and Recommendations

Table A-2 presents the annual  $SO_2$  emissions data for the applicable attainment/unclassifiable areas for the period 2014 through 2020. Annual  $SO_2$  emissions are listed for the applicable DRR source in each area, along with all the background sources that were included in the DRR and  $SO_2$  Consent Decree modeling.

USEPA's implementation of the primary SO<sub>2</sub> NAAQS occurred in phases and continues with ongoing annual emissions assessment requirements. As a result, progressively more recent years of emissions data have been used in modeling demonstrations that have been the basis of some area designations and in verification modeling. The year with the maximum annual emissions in each three-year modeled period was determined for each area and then compared with the area emission totals for 2020. These data were then compared with USEPA's recommended guidelines for additional modeling presented in the Preamble to the DRR (80 FR 51052). Emissions data for 2012-2014 were used in the SO<sub>2</sub> Consent Decree modeling, whereas emissions data for 2013-2015 were used in the DRR modeling. The Crawford County area modeling was updated using emissions data for 2015-2017 due to the 2017 emissions increase. The Granite City area modeling was updated using emissions data for 2016-2018 due to the 2018 emissions increase. The results of these analyses are presented below:

**Jasper County** – The highest modeled annual SO<sub>2</sub> emissions total for the Jasper County attainment/unclassifiable area was 16,533.83 tons, which occurred in 2012. Emissions from the Newton Power Station, the only applicable SO<sub>2</sub> source for this area, decreased to 4,632.20 tons in 2020 (-72.0%). Given the emissions decrease in 2020, Illinois EPA recommends no additional modeling for the Jasper County attainment/unclassifiable area at this time.

**Massac County** – The highest modeled annual SO<sub>2</sub> emissions total for the Massac County attainment/unclassifiable area was 48,599.45 tons, which occurred in 2014. Emissions from SO<sub>2</sub> sources in the area decreased to 17,536.30 tons in 2020 (-63.9%). Given the emissions decrease in 2020, Illinois EPA recommends no additional modeling for the Massac County attainment/unclassifiable area at this time.

**Crawford County** – The highest modeled annual SO<sub>2</sub> emissions total for the Crawford County attainment/unclassifiable area was 9,625.37 tons, which occurred in 2017. Emissions from SO<sub>2</sub> sources in the area decreased to 5,793.68 tons in 2020 (-39.8%). Given the emission decreases in 2020, Illinois EPA recommends no additional modeling for the Crawford County attainment/unclassifiable area at this time.

**Lake County** – The highest modeled annual  $SO_2$  emissions total for the Lake County attainment/unclassifiable area was 9,205.90 tons, which occurred in 2013. Emissions from  $SO_2$  sources in the area decreased to 612.68 tons in 2020 (-93.3%). Given the emissions decrease in 2020, Illinois EPA recommends no additional modeling for the Lake County attainment/unclassifiable area at this time.

**Granite City Area** – The highest modeled annual SO<sub>2</sub> emissions total for the Granite City attainment/unclassifiable area was 2,995.99 tons, which occurred in 2018. Emissions from SO<sub>2</sub>

sources in the area decreased to 1,444.19 tons in 2020 (-51.8%). Given the emissions decrease in 2020, Illinois EPA recommends that no additional modeling be performed for the Granite City attainment/unclassifiable area at this time.

**Williamson County** – The highest modeled annual SO<sub>2</sub> emissions total for the Williamson County attainment/unclassifiable area was 8,651.60 tons, which occurred in 2014. Emissions from SO<sub>2</sub> sources in the area decreased to 2,927.42 tons in 2020 (-66.2%). Given the emissions decrease in 2020, Illinois EPA recommends no additional modeling for the Williamson County attainment/unclassifiable area at this time.

|            | <b>F</b> _ 111 <b>b</b>             | 2014      | 2015      | 2016      | 2017      | 2018      | 2019      | 2020      | Modeled   | 2020 Area |
|------------|-------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| ID Number  | Facility Name                       | Emissions | Maximum   | Total     |
| 079808AAA  | Newton Power Station                | 16,372.76 | 12,805.40 | 7,742.70  | 4,873.20  | 4,638.60  | 5,000.30  | 4,632.20  | 16,533.83 | 4,632.20  |
| 127855AAC  | Joppa Power Station                 | 18,229.24 | 13,230.00 | 7,634.00  | 10,310.20 | 11,968.40 | 10,436.10 | 8,243.00  |           |           |
| 127855AAA  | Holcim US Inc.                      | 491.65    | 259.42    | 698.18    | 409.31    | 332.38    | 208.59    | 268.70    |           |           |
| 127899AAA  | Midwest Electric Power Inc. (MEPI)  | 0.00      | 0.01      | 0.01      | 0.02      | 0.01      | 0.03      | 0.10      | 48,599.45 | 17,536.30 |
| 127855AAB  | 5AAB Trunkline Gas Company          |           | 0.60      | 0.20      | 0.12      | 0.12      | 0.18      | 0.10      | 40,555.45 | 17,550.50 |
| 127854AAD  | Honeywell International Inc.        | 143.15    | 147.30    | 148.89    | 100.60    | 0.04      | 0.00      | 0.00      |           |           |
| 2114500006 | TVA – Shawnee Power Plant           | 29,734.54 | 24,301.80 | 23,807.80 | 20,494.00 | 15,149.50 | 16,345.70 | 9,024.40  |           |           |
| 033025AAJ  | Rain CII Carbon                     | 3,134.10  | 2,161.40  | 3,836.20  | 6,810.10  | 4,162.60  | 5,451.60  | 4,067.00  |           |           |
| 033808AAB  | Marathon Petroleum                  | 207.10    | 213.40    | 262.22    | 177.17    | 114.07    | 146.16    | 138.78    | 9,625.37  | 5,793.68  |
| 1815300005 | Merom Generating Station            | 3,315.90  | 2,579.40  | 3,143.80  | 2,638.10  | 3,802.70  | 2,897.90  | 1,587.90  |           |           |
| 097190AAC  | Midwest Generation LLC – Waukegan   | 5,792.40  | 2,339.30  | 2,733.95  | 1,705.94  | 1,173.77  | 754.15    | 416.40    |           |           |
| 097190AAP  | New NGC Inc.                        | 8.70      | 8.70      | 7.72      | 0.13      | 0.12      | 0.13      | 0.13      |           |           |
| 097025AAR  | Countryside Genco LLC               | 53.10     | 41.50     | 19.43     | 41.85     | 50.73     | 51.76     | 43.00     |           |           |
| 097806AAG  | Countryside Landfill                | 6.30      | 14.50     | 30.90     | 21.80     | 17.20     | 16.20     | 37.50     |           |           |
| 097809AAD  | 097125AAA AbbVie Inc.               |           | 0.20      | 0.32      | 0.31      | 0.31      | 0.31      | 0.31      | 9,205.90  | 612.68    |
| 097125AAA  |                                     |           | 6.60      | 12.35     | 1.50      | 1.57      | 0.40      | 0.36      |           |           |
| 097200AAV  |                                     |           | 26.70     | 23.40     | 32.87     | 47.80     | 81.83     | 98.09     |           |           |
| 097200ABC  | 200ABC Bio Energy (Illinois) LLC    |           | 22.30     | 15.10     | 21.60     | 25.30     | 32.54     | 16.89     |           |           |
| 230006260  | Pleasant Prairie Generating Station | 1,310.10  | 1,335.50  | 1,087.00  | 931.00    | 258.30    | Shutdown  | Shutdown  |           |           |
| 119813AAI  | U.S. Steel – Granite City Works     | 961.30    | 828.30    | 9.94      | 12.10     | 350.30    | 418.67    | 375.25    |           |           |
| 119040ATN  | Gateway Energy & Coke               | 1,240.60  | 1,187.70  | 1,190.74  | 1,470.37  | 2,542.82  | 1,171.37  | 976.71    |           |           |
| 119465AAG  | Green Plains Madison LLC            | 7.90      | 7.80      | 3.10      | 1.96      | 1.72      | 0.96      | 0.60      |           |           |
| 119040AAC  | Amsted Rail Co. Inc.                | 5.20      | 5.90      | 4.00      | 3.50      | 5.10      | 4.00      | 1.00      | 2,995.99  | 1,444.19  |
| 163121AAB  | Afton Chemicals                     | 96.70     | 98.00     | 72.97     | 73.78     | 71.18     | 73.40     | 58.02     |           |           |
| 163050AAD  | Milam Recycling & Disposal          | 28.90     | 17.50     | 7.35      | 15.98     | 24.10     | 32.87     | 31.85     |           |           |
| 119801AAK  | Chain of Rocks Recycling & Disposal | 4.70      | 4.80      | 4.81      | 4.66      | 0.77      | 0.80      | 0.76      |           |           |
| 199856AAC  | Southern Illinois Power Coop        | 8,651.60  | 4,233.60  | 3,699.20  | 3,830.80  | 5,112.70  | 5,843.70  | 2,927.40  | 8,651.62  | 2,927.42  |
| 199862AAD  | United States Penitentiary          | 0.02      | 0.01      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0,001.02  | 2,527.42  |

## Table A-2: Annual SO<sub>2</sub> Emissions Data for Attainment/Unclassifiable Areas

Source: Illinois EPA Annual Emissions Reports, except for those values listed in *red italics*, which were obtained from USEPA's Clean Air Markets database

# **Petitioner's Hearing Exhibit T**



An EDISON INTERN ITHE NUL Company

Basil G. Constantelos Managing Director Environmental Services

July 15, 2009

Mr. Allan Keller Manager, Permits Section, Bureau of Water Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, IL 62794-9276

Re: April 10, 2009 IEPA Letters: Ash Impoundment Groundwater Protection Development of Groundwater Monitoring Plan MWG Will County, Powerton and Joliet 29 Stations

May 15, 2009 IEPA Letters: Ash Impoundment Groundwater Protection Hydrogeologic Assessment Plan MWG Crawford and Waukegan Stations

#### Dear Mr. Keller:

This is Midwest Generation, LLC (MWG)'s further response to the Agency's April 10, 2009, letters regarding the hydrogeologic evaluation of ash impoundments at each of the following MWG electric generating stations: Will County, Powerton, Joliet 29, Crawford and Waukegan (collectively, the "MWG Stations"). In our prior May 4, 2009, letter to the Agency regarding the Will County, Powerton and Joliet Stations, we told you that we had begun the work necessary to respond to the Agency's requests but needed additional time to complete our review and to respond. We appreciate the Agency's extension of time to July 15, 2009, to submit this response. As you know, in the interim, the Agency also sent MWG two May 15, 2009, letters requesting a similar evaluation be performed for the Crawford and Waukegan Stations. This response also timely addresses the Agency's May 15, 2009, request regarding those two stations.

While MWG has performed the work necessary to evaluate the ash impoundments at the MWG Stations, MWG still questions the Agency's legal authority to make these requests. The Agency's April 10, 2009, letters state that these requests were issued pursuant to Sections 4 and 12 of the Illinois Environmental Protection Act (the "Act"). The Agency's May 15, 2009, letters instead claim that the absence of a groundwater monitoring program at the stations means that compliance with 35 Ill. Adm. Code Part 620 has not been demonstrated. MWG respectfully submits that neither of the Agency's alternative legal grounds for issuing these requests gives it the authority to do so. Sections 4 and 12 of the Act do not contain any language authorizing the Agency to require the submission of the requested hydrogeologic assessment plans. Section 4 speaks solely of the Agency's investigatory authority, not any authority to require others to conduct investigations. Section 12 of the Act requires proof that either water pollution or water pollution hazard has been "created." There are no data or other facts to support any allegation, let alone a finding, that either water pollution or water pollution hazards under Section 12 of the Act have been created at any of the MWG stations. Therefore, there is no legal basis under the Act to authorize the Agency's demand for any investigative or corrective action.

Midwest Generation EME, 1 LC One Financial Place 440 South LaSalle Street Suite 3500 Chicago, II. 60605 Tel: 312 583 6029 Fax 312 788 5529 Email: bconstantelos@mwgen.com

Mr. Allan Keller July 15, 2009 Page 2

Similarly, the Part 620 groundwater regulations also do not contain any requirement that obligates MWG to prove compliance with the groundwater standards when there are no facts indicating or supporting an allegation of noncompliance. If this were a correct interpretation of the Part 620 regulations, which it is not, then every facility in the state which conducts on-site waste treatment operations would be required to conduct the hydrogeological assessment the Agency is demanding of MWG in order to affirmatively "demonstrate" to the Agency's satisfaction that it is maintaining compliance with the Part 620 groundwater regulations. To our knowledge, the Agency has not previously so broadly interpreted the Part 620 regulations. Moreover, we found no Illinois Pollution Control Board opinions so interpreting the Part 620 regulations.

As we have previously stated, the subject ash ponds at the MWG Stations are not disposal sites and the ash is routinely removed from the ash ponds. Rather, pursuant to the terms of the Stations' NPDES Permits, they are part of flow-through wastewater treatment processes at each of the stations. MWG's operation of the ash ponds has been carried out in accordance with the terms and conditions of the NPDES Permits. Under Section 12(f) of the Act, compliance with the terms and conditions of any permit issued under Section 39(b) of this Act is deemed compliance with this subsection. Further, the terms and conditions of the NPDES permit do not authorize the Agency to require the work addressed in its letters.

MWG is aware that the Agency has sent similar letters to other electric generating stations. In this regard, it appears that the Agency was not fully informed of relevant facts and circumstances that would distinguish the MWG stations and show the Agency that its request is not warranted or necessary. There are a number of site-specific facts that demonstrate there is no basis to conclude that the MWG ash ponds are causing violations of the Part 620 groundwater standards, including that each of the MWG ash ponds is lined and is regularly inspected by Midwest Gen to confirm that the integrity of the liners is maintained.

However, because MWG does wish to cooperate with the Agency by demonstrating that there is no reasonable basis for requiring groundwater monitoring at the MWG stations, we have proceeded to conduct a hydrogeologic assessment of each of the stations' ash ponds. The results of that assessment are reported in the enclosed report entitled "Hydrogeological Assessment for Midwest Generation Stations: Will County, Waukegan, Joliet 29, Crawford and Powerton." We believe this evaluation should satisfy the Agency's concerns and needs regarding the MWG stations. We are, of course, willing to discuss and explain further any of the information contained in the enclosed report as well as answering any Agency questions concerning the enclosed report. Please contact the undersigned if you have any questions or wish to discuss the enclosed report.

Sincerely,

Basil G. Constantelos Managing Director Environmental Services

cc: Bill Buscher, Illinois EPA, Bureau of Water, Hydrogeologic and Assessment Unit Darin LeCrone, Illinois EPA, Bureau of Water, Industrial Unit

#### HYDROGEOLOGICAL ASSESSMENT OF MIDWEST GENERATION ELECTRIC GENERATING STATIONS:

Will County Station, Waukegan Station, Joliet 29 Station, Crawford Station, Powerton Station

**July 14, 2009** 

#### I. Executive Summary

Midwest Generation (MWG) has reviewed existing data and newly developed data in order to perform a hydrogeologic assessment in response to the Illinois Environmental Protection Agency's (the "IEPA" or "Agency") April 10, 2009 and May 15, 2009 requests regarding the following MWG electric generating stations: Will County Station, Waukegan Station, Joliet 29 Station, Crawford Station and Powerton Station. The assessment included a review and evaluation of each of the subject wastewater treatment systems (collectively referred to as "ash ponds"), an evaluation of the hydrogeology in the vicinity of the ash ponds, a potable water well survey within a 2500 feet radius of the respective stations' ash ponds and an assessment of the potential, if any, for impacts to existing water wells identified in the survey. The results of the assessment are that there is no basis for finding either (i) that MWG's operation of the 35 Ill. Adm. Code Part 620 regulations; or (ii) that there is any risk of impairing potable water sources or other endangerment to human health.

#### II. Station Ash Ponds and Hydrogeologic Assessment

As part of the assessment, each of the ash ponds at the MWGen stations were reviewed and evaluated. This section provides a description of each of the ash impoundments in use at the respective MWG stations, including their location and relevant construction details. For each of the stations, an assessment of the hydrogeology of the subsurface area in the vicinity of the ash ponds also was conducted. The results of the hydrogeological assessment for each station are also reported in this section.

A. Will County Station:

North Ash Pond South Ash Pond 1 South Ash Pond 2 South Ash Pond 3

The four Will County Generating Station ash ponds are all located in the western half of Section 2, Township 36 North, Range 10 East, in the Village of Romeoville, Will County, Illinois. These ponds are currently lined with 36 inches of "Poz-o-Pac" pavement originally constructed in 6-inch lifts in the late 1970s. "Poz-o-pac" is a fly ash aggregate liner similar to concrete. The potential for a release from the ash ponds is low because these ponds are lined with Poz-o-pac liners. (The ponds also are scheduled to be relined in 2009 with high-density polyethylene geomembranes under Water Pollution Control Construction Permit #2008-EB-1166.)

Geology beneath the Will County ash ponds includes Silurian Dolomite from near the ground surface to a depth of approximately 55 feet, with shale (approximately 55-100 feet below ground surface) and limestone (approximately 100-145 feet below ground surface) underlying the dolomite. The ponds are situated between the Des Plaines River and the Chicago Sanitary and Ship Canal, and the probable direction of groundwater flow is to these surface waters.

B. Waukegan Station:

East Ash Pond West Ash Pond

The two Waukegan Station ash ponds are located in the center of Section 15, Township 45 North, Range 12 East, in the City of Waukegan, Lake County, Illinois. These ponds are lined with high-density polyethylene (HDPE) geomembrane. Historically, these ponds have contained an impermeable liner. The potential for a release from the Waukegan ash ponds is low because these ponds are lined with HDPE liners.

The geology beneath the Waukegan ash ponds consists of fill to approximately 20 feet below ground surface, underlain by approximately 100 feet of lake-deposited sand. The area surrounding the ash ponds was reclaimed from Lake Michigan in the early twentieth century. The probable direction of groundwater flow is east towards Lake Michigan.

C. Joliet 29 Station:

Ash Pond 1 Ash Pond 2 Ash Pond 3

The three Joliet 29 ash ponds are located in the southeast ¼ of Section 19 and the southwest ¼ of Section 20, Township 35 North, Range 10 East, in the Village of Rockdale, Will County, Illinois, and include Ash Ponds 1, 2, and 3. Ash Ponds 1 and 2 are lined with high-density polyethylene (HDPE) geomembrane installed last year (2008) under Water Pollution Control Construction Permit #2007-EB-4091. Prior to 2008, they were lined with 12 inches of Poz-o-Pac pavement originally constructed in 6-inch lifts in the late 1970s. Ash Pond 3 is lined with 12 inches of Poz-o-Pac pavement originally constructed in 6-inch lifts. The potential for a release from the ash ponds is low because these ponds are lined with HDPB liners.

The geology beneath the Joliet 29 ash ponds includes approximately 5-30 feet of fine sandy loam, underlain by Silurian Dolomite to approximately 176 feet below ground surface, and Maquoketa shale from approximately 176 to 241 feet below ground surface. The shale is an effective confining unit separating the Silurian dolomite from deeper aquifers. Shallow groundwater likely flows south to the Des Plaines River.

#### D. Crawford Station:

#### One Equalization Basin

The Crawford Station equalization basin is located in the NW ¼ of Section 35, Township 39 North, Range 13 Bast, in the Town of Cicero, Cook County, Illinois. The basin is lined with concrete.

The geology beneath the Crawford ash pond includes silt and clay associated with Cahokia Alluvium and the Wedron Formation to a depth of approximately 20 feet below ground surface, underlain by Silurian Dolomite. Silt and clay, particularly those associated with the Wedron Formation, typically have low hydraulic conductivity. The likely groundwater flow direction is south to the Chicago Sanitary and Ship Canal.

The potential for groundwater migration from the Crawford ash pond is low due to the both the existence of the concrete liner and the low hydraulic conductivity of the underlying silt and clay.

#### E. Powerton Station

Ash Surge Basin Secondary Ash Settling Basin Bypass Basin

The three Powerton ash ponds are located in Section 9, Township 24 North, Range 5 West, near the City of Pekin, Tazewell County, Illinois. The Ash Surge Basin, Emergency Overflow Basin, and the Bypass basin are lined with 12 inches of Poz-o-Pac pavement constructed in 6-inch lifts at the bottom of the basin, and Hypalon geomembrane liner on the side slopes. The potential for groundwater migration from the the ash ponds is low due to the both the existence of the Poz-o-Pac/Hypalon geomembrane liner

The geology beneath the Powerton ash ponds includes sands and gravels of the Henry Formation to approximately 90 feet below ground surface. Groundwater flow is likely north towards the Illinois River.

#### III. Potable Water Survey and Assessment

A survey of all potable water sources within a 2500 feet radius of the respective stations' ash ponds was performed. The following databases and sources of information were utilized in order to determine community water source and water well locations and construction in the vicinity of the ash pond wastewater treatment systems:

- Illinois State Geological Survey (ISGS) -Water Well Database Query;
- Illinois State Water Survey (ISWS) Private Well Database and water well construction report request; and
- Illinois Division of Public Water Supply web-based Geographic System (GIS) files;

The survey results for each of the stations are set forth below.

#### A. Will County Station

The only identified potable wells, with associated structures, are located between the Des Plaines River and the Chicago Sanitary and Ship Canal. These wells are more than 1,500 feet deep (see wells 8 and 9 on attached Will County figure.) Based on this geologic profile, these wells are drawing groundwater from a deep aquifer below the Maquoketa confining unit. They do not draw groundwater from the shallow dolomite underlying the station's ash ponds.

Because there are no shallow potable wells between the ash ponds and the surface water bodies to which shallow groundwater discharges, there are no groundwater receptors between the ash ponds and the groundwater discharge point. As a result, there is no reasonable basis to expect that a release from this facility will pose any risk to human health.

#### B. Waukegan Station

There are eight potable/industrial use wells within 2500 feet of Waukegan's ash ponds (see attached Waukegan figure.) However, the ash ponds are located in close proximity to Lake Michigan and groundwater is believed to flow toward the lake. Further, there are no potable wells used for drinking water supplies to the east or south of the ash pond. Therefore, there is no reasonable basis to expect that a release from the ash ponds will pose any risk to human health.

#### C. Joliet 29

Seventeen potable/industrial use wells are within a 2500 foot radius of the Joliet 29 Station's ash ponds (see attached Joliet figure.) However, most of these wells are screened at the deeper area aquifers. Only 2 of the wells (Numbers 19 and 4 on figure) are downgradient from the ash impoundment. Both of these wells are drilled at 1525 feet below ground surface and screened below the Maquoketa shale. These wells both belong to MWG and have had a successful compliance record during sampling in accordance with the drinking water regulations.

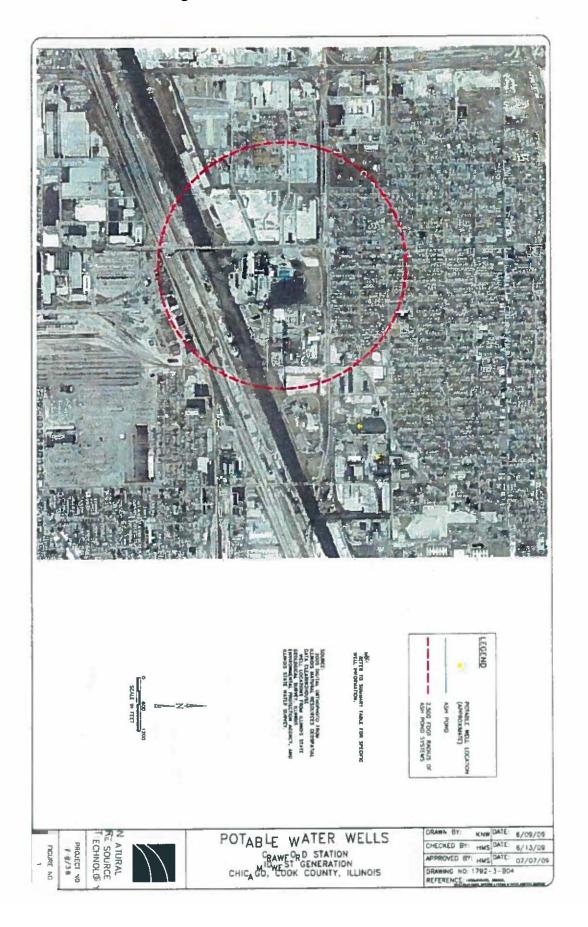
The absence of shallow potable wells between the ash ponds and the Des Plaines River, where shallow groundwater will discharge, means that there are no groundwater receptors between the ash ponds and the groundwater discharge point. As a result, there is no reasonable basis to expect that a release from this facility will pose any risk to human health.

#### D. Crawford

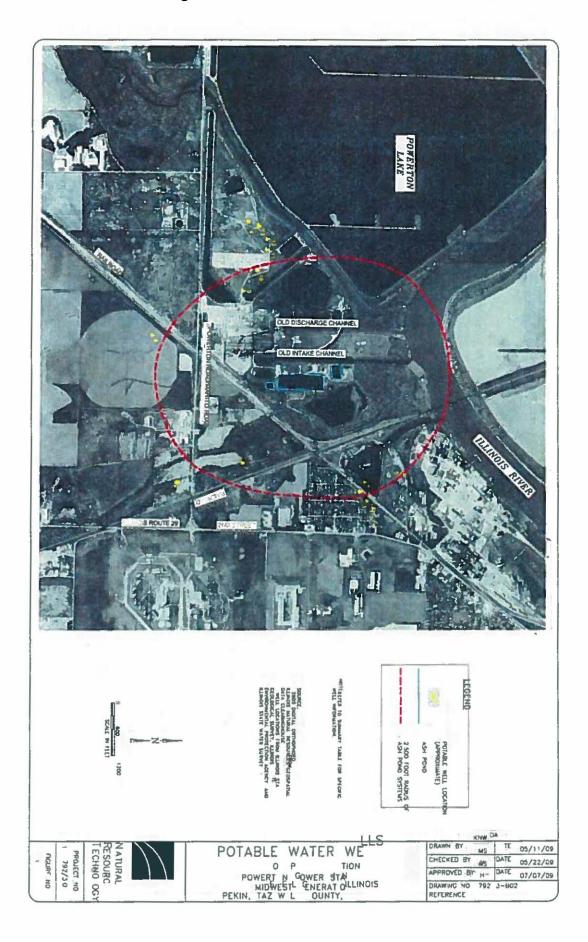
No potable wells were identified within a 2,500-foot radius of the station's ash pond (see attached Crawford figure.) The surrounding communities of Cicero and Chicago are served by municipal water distribution systems. Given the low hydraulic conductivity of the silt and clay, likely direction of groundwater flow toward the Chicago Sanitary and Ship Canal, and lack of potable wells near the ash pond, as well as the concrete-lining of the pond, there is no reasonable basis to expect that a release from this facility will pose any risk to human health.

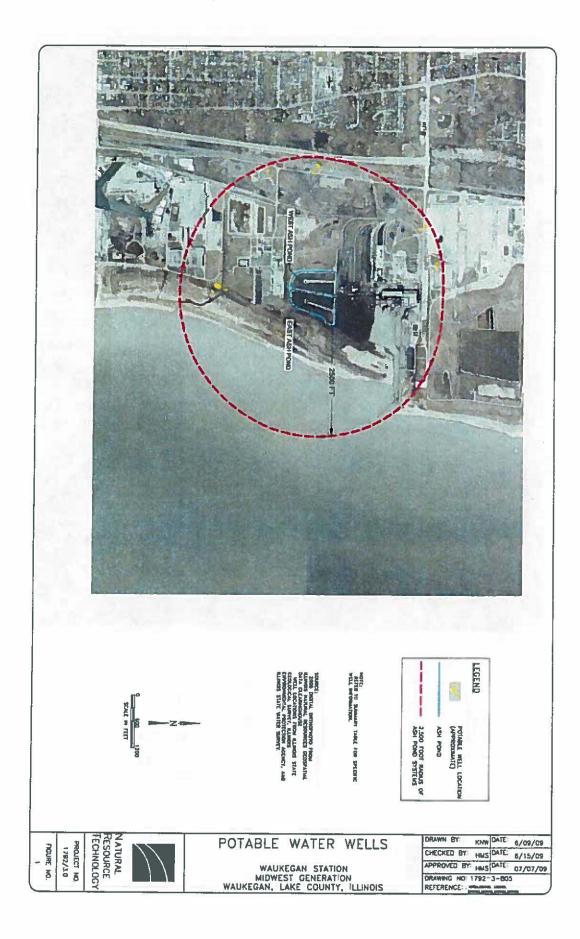
#### E. Powerton

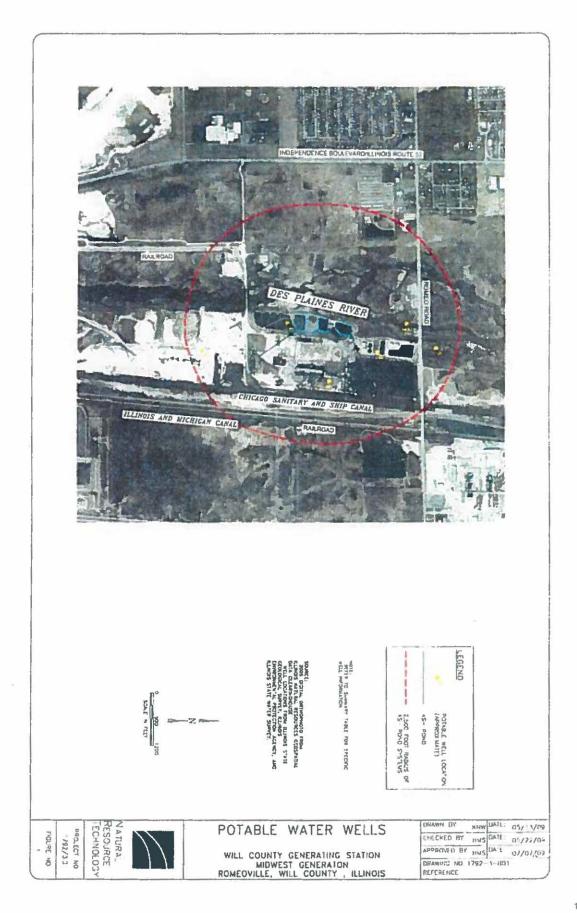
The well survey identified six wells within a 2,500-foot radius of the ash ponds, each of which is screened below 50 feet (see attached Powerton figure.) None of these wells are located downgradient from the ash ponds. Two of these wells supply Powerton Station with water. They are regularly sampled and analyzed for potable water constituents. The sampling results consistently have been in compliance with potable water regulations.


#### III. Conclusion

The hydrogeologic assessment of the ash pond wastewater treatment systems at each of the five MWG station evaluated each of the ash ponds in use at the stations. All of the ash ponds are lined with impermeable materials, including concrete, HDPE and Poz-o-Pac materials, to prevent the release of wastewater to the environment. For certain of the stations, the geology of the underlying soils is characterized by low hydraulic conductivity of the underlying media which would prevent the migration of wastewater even in the event of a release. Further, all of the ash ponds are located in close proximity to surface waters and the probable direction of groundwater flow is towards the surface waters and not in the direction of potable water wells.


Existing water wells, if any, were identified as part of the potable water well survey conducted for the area within a 2500 feet radius of the respective stations' ash ponds. An assessment of the potential, if any, for impacts to existing water wells was performed for each of the stations. For each of the MWG stations, the assessment findings are that there


is no reasonable basis on which to conclude (i) that MWG's operation of the ash ponds is causing migration of contaminants from the ash ponds in violation of the 35 Ill. Adm. Code Part 620 regulations; or (ii) that there is any risk of impairing potable water sources or other endangerment to human health.


.













# **Petitioner's Hearing Exhibit U**

#### **BEFORE THE ILLINOIS POLLUTION CONTROL BOARD**

) )

)

)

)

)

)

IN THE MATTER OF:

STANDARDS FOR THE DISPOSAL OF COAL COMBUSTION RESIDUALS IN SURFACE IMPOUNDMENTS: PROPOSED NEW 35 ILL. ADM. CODE 845 R 2020-019

(Rulemaking - Water)

#### **ILLINOIS EPA'S PRE-FILED ANSWERS**

NOW COMES the Illinois Environmental Protection Agency (Illinois EPA or Agency), by and through one if its attorneys, and submits the following information with respect to its pre-filed answers.

1. On March 30, 2020, the Illinois EPA filed a rulemaking, proposing new rules at 35 Ill. Adm. Code 845 concerning coal combustion residual surface impoundments at power generating facilities

in the State.

2. Public Act 101-171, effective July 30, 2019, amended the Illinois Environmental Protection Act, by among other things, adding a new Section 22.59 (415 ILCS 5/22.59). Public Act 101-171 includes a rulemaking mandate in Section 22.59(g) which directs the Board to adopt rules "establishing construction permit requirements, operating permit requirements, design standards, reporting, financial assurance, and closure and post-closure care requirements for CCR surface impoundments." 415 ICLS 5/22.59(g). The Board is required is adopt new rules for 35 Ill. Adm. Code part 845 by March 30, 2021.

3. The Agency timely filed pre-filed testimony for eight witnesses.

4. Based on the pre-filed testimony, Illinois EPA received over 1000 questions counting subparts.

5. On June 30, 2020, the Agency asked that it be granted until August 3, 2020 to respond to the pre-filed questions.

4

- B) located in wetlands under Section 845.310 (Wetlands);
- C) located in fault areas under Section 845.320 (Fault areas);
- D) located in a seismic impact zone under Section 845.330 (Seismic impact zones); and
- E) located in an unstable area under Section 845.340 (Unstable areas).

<u>Response:</u> The Agency has no objection to the revisions as suggested by the Board.

# 22. The proposed subsection Section 845.230(d)(2)(E) is numbered as (d)(2)(D) due to a typographical oversight. Therefore, subsections Section 845.230(d)(2)(D) thru (d)(2)(L) needs to be renumbered, as well as any cross references.

<u>Response:</u> The typographical errors in the numbering are noted. The only cross references the Agency has identified for 845.230(d)(2) are 845.230(d)(2)(C) in 845.530(b) and 845.230(d)(2)(A) in 845.540(b)(1)(A), neither of which are indicated in the affected subsections of 845.230(d)(2).

23. The proposed subsections 845.230(d)(2)(H)(i) thru (iv) specify detailed groundwater monitoring information that must be submitted for Initial Operating Permit for Existing, Inactive and Inactive Closed CCR Surface Impoundments. Please comment on why similar information is not required for construction permit applications under Section 845.210, as well as initial operating permit for new construction.

<u>Response:</u> The groundwater monitoring data required by this subsection, is necessary to determining the current site characteristics and compliance status for existing CCR surface impoundments. This data will be used to determine the operational conditions or corrective action which might be necessary under the rule for these existing facilities. Groundwater monitoring needs for construction permits, or operating permits for new construction, will be evaluated during the application review. Determinations on the need for a revised groundwater monitoring program will be based on the effects on the physical, operational, or environmental conditions following construction.

24. Subsection 845.240(b) requires the owner or operator to prepare and circulate a notice explaining the proposed construction project and any related activities and the time and place of the public meeting. Please comment on whether this section should specify that the public notification must include the owner or operator's contact information, including the owner or operator's publicly accessible internet site where all documentation relied upon in preparing the tentative construction

# **Petitioner's Hearing Exhibit V**

|          | А                  | В                          | С                                | D                        | Е                     | F                           | G               | Н                          | Ι                  | J                                   |
|----------|--------------------|----------------------------|----------------------------------|--------------------------|-----------------------|-----------------------------|-----------------|----------------------------|--------------------|-------------------------------------|
| 1        | Company            | Facility                   | Pond ID Number                   | Pond Description         | Closure Complete      | Post Closure Care Complete  | Status          | Close before July 31, 2021 | Area of EJ Concern | Exceeds 620/GWPS                    |
| 2        | Ameren             | Venice                     | W1191050002-01                   | N. Pond                  | yes, Nov. 2012        | no                          | Inactive Closed | see closure date           | yes                | yes has GMZ                         |
| 3        | Ameren             | Venice                     | W1191050002-02                   | S. Pond                  | yes, Nov. 2012        | no                          | Inactive Closed | see closure date           | yes                | yes has GMZ                         |
| 4        | Ameren             | Hutsonville                | W0330100003-01                   | Pond A                   | yes, Nov. 2016        | no                          | Inactive        | see closure date           | no                 | yes has GMZ                         |
| 5        | Ameren             | Hutsonville                | W0330100003-02                   | Pond B                   | no, removal Nov. 2016 | no pond specific monitoring | Inactive        | see closure date           | no                 | unkown, no pond specific monitoring |
| 6        | Ameren             | Hutsonville                | W0330100003-03                   | Pond C                   | no, removal Nov. 2016 | no pond specific monitoring | Inactive        | see closure date           | no                 | unkown, no pond specific monitoring |
| 7        | Ameren             | Hutsonville                | W0330100003-04                   | Pond D                   | yes, Jan. 2013        | no                          | Inactive Closed | see closure date           | no                 | yes                                 |
| 8        | Ameren             | Hutsonville                | W0330100003-05                   | Bottom Ash               | no, removal Nov. 2016 | no pond specific monitoring | Inactive        | see closure date           | no                 | unkown, no pond specific monitoring |
| 9        | Ameren             | Meredosia                  | W1370300005-01                   | Bottom Ash Pond          | yes, Jan 2019         | no                          | Inactive        | see closure date           | no                 | yes has GMZ                         |
| 10       | Ameren             | Meredosia                  | W1370300005-02                   | Fly Ash                  | yes, Aug 2019         | no                          | Inactive        | see closure date           | no                 | yes has GMZ                         |
| 11       | Ameren             | Meredosia                  | W1370300005-03                   | Old Ash Pond             | no                    | no                          | Inactive        | no                         | no                 | Not Fully Evaluated                 |
| 12       | CWLP               | City Water Light and Power | W1671200052-01                   | Lake Side Pond           | no                    | no                          | Existing        | no                         | yes                | yes                                 |
| 13       | CWLP               | City Water Light and Power | W1671200052-02                   | Dallman Pond             | no                    | no                          | Existing        | no                         | yes                | yes                                 |
| 14       | Vistra             | Baldwin Energy Center      | W1578510001-01                   | Old East Fly Ash Pond    | no                    | no                          | Existing        | Likely                     | no                 | yes has GMZ                         |
| 15       | Vistra             | Baldwin Energy Center      | W1578510001-02                   | East Fly Ash Pond        | no                    | no                          | Existing        | Likely                     | no                 | yes has GMZ                         |
| 16       | Vistra             | Baldwin Energy Center      | W1578510001-03                   | West Fly Ash Pond        | no                    | no                          | Existing        | Likely                     | no                 | yes has GMZ                         |
| 17       | Vistra             | Baldwin Energy Center      | W1578510001-06                   |                          | no                    | no                          | Existing        | no                         | no                 | yes                                 |
|          | Vistra             | Coffeen Station            | W1350150004-01                   | Ash Pond 1               | no                    | no                          | Existing        | no                         | no                 | Not Fully Evaluated                 |
| 19       | Vistra             | Coffeen Station            | W1350150004-02                   |                          | no                    | no                          | Existing        | Likely                     | no                 | yes has GMZ                         |
| 20       | Vistra             | Coffeen Station            | W1350150004-03                   | GMF Pond                 | no                    | no                          | Existing        | no                         | no                 | Not Fully Evaluated                 |
| -        | Vistra             | Coffeen Station            | W1350150004-04                   | GMF Recycle Pond         | no                    | no                          | Existing        | no                         | no                 | Not Fully Evaluated                 |
| 22       | Vistra             | Duck Creek Station         | W0578010001-01                   | Ash Pond No.1            | no                    | no                          | Existing        | Likely                     | yes                | yes has GMZ                         |
| 23       | Vistra             | Duck Creek Station         | W0578010001-02                   |                          | no                    | no                          | Existing        | Likely                     | yes                | yes has GMZ                         |
|          | Vistra             | Duck Creek Station         |                                  |                          | no                    | no                          | Existing        | no                         | yes                | Not Fully Evaluated                 |
| 25       | Vistra             | Duck Creek Station         | W0578010001-04                   |                          | no                    | no                          | Existing        | no                         | yes                | Not Fully Evaluated                 |
| -        | Vistra             | Duck Creek Station         |                                  | GMF Recycle Pond         | no                    | no                          | Existing        | no                         | yes                | Not Fully Evaluated                 |
|          | Vistra             | Edwards Station            | W1438050005-01                   |                          | no                    | no                          | Existing        | no                         | no                 | Not Fully Evaluated                 |
| _        | Vistra             | Joppa Station              | W1270100004-01                   |                          | no                    | no                          | Inactive        | no                         | no                 | Not Fully Evaluated                 |
|          | Vistra             | Joppa Station              | W1270100004-02                   |                          | no                    | no                          | Existing        | no                         | no                 | Not Fully Evaluated                 |
| _        | Vistra             | Havana Station             |                                  | East Ash Pond Cell 1     | no                    | no                          | Existing        | no                         | yes                | Not Fully Evaluated                 |
| 31       | Vistra             | Havana Station             |                                  | East Ash Pond Cell 2     | no                    | no                          | Existing        | no                         | yes                | Not Fully Evaluated                 |
| 32       | Vistra             | Havana Station             |                                  | East Ash Pond Cell 3     | no                    | no                          | Existing        | no                         | yes                | Not Fully Evaluated                 |
| 33       | Vistra             | Hennepin Station           |                                  | West Ash Pond 1          | no                    | no                          | Inactive        | Likely                     | yes                | yes has GMZ                         |
| _        | Vistra             | Hennepin Station           | W1550100002-02                   |                          | no                    | no                          | Inactive        | Likely                     | yes                | yes has GMZ                         |
| 35       | Vistra             | Hennepin Station           |                                  | West Secondary Ash Pond  | no                    | no                          | Inactive        | Likely                     | yes                | yes has GMZ                         |
| 36       | Vistra             | Hennepin Station           | W1550100002-04                   |                          | no                    | no                          | Inactive        | Likely                     | yes                | yes has GMZ                         |
| _        | Vistra             | Hennepin Station           |                                  | East New Primary Pond    | no                    | no                          | Existing        | no                         | yes                | Not Fully Evaluated                 |
| 38       | Vistra             | Hennepin Station           | W1550100002-07                   |                          | no                    | no                          | Inactive        | Likely                     | yes                | yes has GMZ                         |
| 39       | Vistra             | Kincaid Generation         | W0218140002-01                   |                          | no                    | no                          | Existing        | no                         | no                 | Not Fully Evaluated                 |
| 40       | Vistra             | Newton Station             | W0798070001-01                   |                          | no                    | no                          | Existing        | no                         | no                 | yes                                 |
| 41       | Vistra             | Vermilion Station          | W1838000002-01                   | North Pond Cell 1 & 2    | no                    | no                          | Inactive        | no                         | no                 | yes                                 |
| 42       | Vistra             | Vermilion Station          | W183800002-03                    |                          | no                    | no                          | Inactive        | no                         | no                 | yes                                 |
| 43       | Vistra             | Vermilion Station          |                                  | New East Pond Cell 1 & 2 | no                    | no                          | Inactive        | no                         | no                 | yes                                 |
| 44       |                    | Wood River Station         | W1190200004-01                   |                          | no                    | no                          | Inactive        | Likely                     | yes                | yes has GMZ                         |
| 45       | -                  | Wood River Station         | W1190200004-02                   | West Ash Pond 2W         | no                    | no                          | Inactive        | Likely                     | yes                | yes has GMZ                         |
| 46       |                    | Wood River Station         |                                  |                          | no                    | no                          | Inactive        | Likely                     | yes                | yes has GMZ                         |
| 47       | 1                  | Wood River Station         | W1190200004-05                   |                          | no                    | no                          | Existing        | no                         | yes                | Not Fully Evaluated                 |
| 48       | Grand Tower<br>NRG | Grand Tower                | W0770400003-01                   |                          | no                    | no                          | Inactive        | Likely                     | no                 | yes has GMZ                         |
| 49       |                    | Will County Station        |                                  | Pond 1 North             | no                    | no                          | Inactive        | no                         | no                 | yes VN/CCA/GMZ                      |
| 50<br>51 | NRG                | Will County Station        |                                  |                          | no                    | no                          | Existing        | no                         | no                 | yes VN/CCA/GMZ                      |
| 51       | NRG<br>NRG         | Will County Station        | W1978100011-03<br>W1978100011-04 |                          | no                    | no                          | Existing        | no                         | no                 | yes VN/CCA/GMZ                      |
| 32       | DIN                | Will County Station        | w19/8100011-04                   | rond i South             | no                    | no                          | Inactive        | no                         | no                 | yes VN/CCA/GMZ                      |

|    | А             | В                             | С              | D                    | E                         | F                          | G               | Н                          | Ι                  | 1                                   |
|----|---------------|-------------------------------|----------------|----------------------|---------------------------|----------------------------|-----------------|----------------------------|--------------------|-------------------------------------|
| 1  | Company       | Facility                      | Pond ID Number | Pond Description     | Closure Complete          | Post Closure Care Complete | Status          | Close before July 31, 2021 | Area of EJ Concern | Exceeds 620/GWPS                    |
| 53 | NRG           | Waukegan Station              | W0971900021-01 | East Pond            | no                        | no                         | Existing        | no                         | yes                | yes VN/CCA                          |
| 54 | NRG           | Waukegan Station              | W0971900021-02 | West Pond            | no                        | no                         | Existing        | no                         | yes                | yes VN/CCA                          |
| 55 | NRG           | Waukegan Station              | W0971900021-03 | Old Pond             | no                        | no                         | Exsiting        | no                         | yes                | Not Fully Evaluated                 |
| 56 | NRG           | Powerton                      | W1798010008-01 | Ash Basin            | no                        | no                         | Existing        | no                         | no                 | yes VN/CCA/GMZ                      |
| 57 | NRG           | Powerton                      | W1798010008-02 | Sec. Ash Basin       | no                        | no                         | Existing        | no                         | no                 | yes VN/CCA/GMZ                      |
| 58 | NRG           | Powerton                      | W1798010008-03 | Metal Cleaning Basin | no                        | no                         | Existing        | no                         | no                 | yes VN/CCA/GMZ                      |
| 59 | NRG           | Powerton                      | W1798010008-04 | Bypass Basin         | no                        | no                         | Existing        | no                         | no                 | yes VN/CCA/GMZ                      |
| 60 | NRG           | Powerton                      | W1798010008-05 | Former Ash Basin     | no                        | no                         | Inactive        | no                         | no                 | Not Fully Evaluated                 |
| 61 | NRG           | Joliet 29                     | W1970450047-01 | Pond 1               | no                        | no                         | Inactive        | no                         | yes                | yes VN/CCA/GMZ                      |
| 62 | NRG           | Joliet 29                     | W1970450047-02 | Pond 2               | no                        | no                         | Existing        | no                         | yes                | yes VN/CCA/GMZ                      |
| 63 | NRG           | Joliet 29                     | W1970450047-03 | Pond 3               | no                        | no                         | Inactive        | no                         | yes                | yes VN/CCA/GMZ                      |
| 64 | NRG           | Joliet 9                      | W1970450046-01 | Lincoln Stone Quarry | no                        | no                         | Existing        | no                         | yes                | yes                                 |
| 65 | Prairie Power | Prairie Power Inc             | W1490650005-01 | N. Pond              | yes,Nov. 2014             | no                         | Inactive Closed | see closure date           | no                 | yes has GMZ                         |
| 66 | SIPC          | Southern Illinois Power Co-op | W1998600002-01 | Pond 1               | no                        | no                         | Existing        | no                         | no                 | unkown, no pond specific monitoring |
| 67 | SIPC          | Southern Illinois Power Co-op | W1998600002-02 | Pond 2               | no                        | no                         | Existing        | no                         | no                 | unkown, no pond specific monitoring |
| 68 | SIPC          | Southern Illinois Power Co-op | W1998600002-03 | Pond 4               | no                        | no                         | Exisiting       | no                         | no                 | unkown, no pond specific monitoring |
| 69 | SIPC          | Southern Illinois Power Co-op | W1998600002-04 | Pond A-1             | no, removal Nov. 2017(may | not compliant W/GWPS       | Inactive        | no                         | no                 | unkown, no pond specific monitoring |
| 70 | SIPC          | Southern Illinois Power Co-op | W1998600002-05 | Pond B-3             | no, removal Nov. 2017     | not compliant W/GWPS       | Existing        | no                         | no                 | unkown, no pond specific monitoring |
| 71 | SIPC          | Southern Illinois Power Co-op | W1998600002-06 | South Fly Ash Pond   | no                        | no                         | Existing        | no                         | no                 | unkown, no pond specific monitoring |
| 72 | SIPC          | Southern Illinois Power Co-op | W1998600002-07 | Pond 3               | no                        | no                         | Existing        | no                         | no                 | unkown, no pond specific monitoring |
| 73 | SIPC          | Southern Illinois Power Co-op | W1998600002-09 | Pond 6               | no                        | no                         | Existing        | no                         | no                 | unkown, no pond specific monitoring |
| 74 | SIPC          | Southern Illinois Power Co-op | W1998600002-10 | Emery Pond           | no                        | no                         | Existing        | Likely                     | no                 | Yes, GMZ application                |